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ABSTRACT 

The development of regional flood-frequency equations is a key component of 

engineering infrastructure design and flood risk assessment at ungauged sites. These equations 

are constructed based on regression analysis techniques to study the connection between peak 

flow observations and different explanatory variables. However, many regions of the world 

remain poorly gauged or have experienced dramatic changes in land use or climate that make 

past observations less useful. To remedy this situation, we need to interpret and construct these 

regional equations based on physical principles of water movement and general knowledge of the 

geographic and geomorphologic setting of the upstream catchment at the location of interest. 

Several studies have examined these regional equations through the scaling theory of floods, 

making physical interpretations of the equation parameters (or scaling parameters) with respect 

to rainfall properties and geomorphologic variables. However, despite the advances of these 

previous works, the scaling theory of floods must be concerted with different, well-known 

problems in statistical hydrology for a proper engineering application in flood regionalization. 

These problems can vary from limitations in peak flow observations (sampling errors) to 

selection of an inadequate model structure of peak flows (epistemic errors). I present a series of 

studies based on hydrologic simulations and peak flow observations that illustrate several aspects 

related to the application and use of the scaling theory of floods, which include the following: (1) 

description of spatial patterns of scaling parameters; (2) inclusion of river network descriptors in 

flood frequency equations; and (3) evaluation of sampling errors and epistemic errors in the 

construction of flood frequency equations. The results presented in this dissertation contribute to 

the development of a more complete regional flood frequency analysis framework that leverages 

the physics of peak flow scaling and river network descriptors.   
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PUBLIC ABSTRACT 

The estimation of extreme peak flows at sites where no streamflow data are available is a 

key component of engineering infrastructure design and flood risk assessment. The most 

common technique to estimate peak flows where no streamflow data are available is the 

construction of empirical regional flood frequency equations. These equations use explanatory 

variables that are easily obtained at any site of interest. However, dramatic changes in land use or 

climate incorporate new physical conditions that make the use of these equations less useful. To 

remedy this situation, we need to interpret and construct these equations based on physical 

principles of water movement and general knowledge of the geographic and geomorphologic 

setting of the upstream catchment for the location of interest. Several studies have examined 

these regional equations through the scaling theory of floods, making physical interpretations of 

the equation parameters with respect to rainfall properties and geomorphologic variabilities. 

However, the testing of the scaling theory of floods needs to be concerted with limitations in 

peak flow observations for a proper engineering application in flood regionalization. I present a 

series of studies based on simulations and observations of peak flow data to expose the dynamic 

of the scaling theory of floods from river network structures to include the density of streamflow 

gauges. The results of this dissertation contribute to the development of a more adequate regional 

flood frequency analysis framework that leverages the physics of peak flow scaling and river 

network descriptors. 
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CHAPTER 1: INTRODUCTION 

1.1. Motivation 

Estimation of peak flows at ungauged sites where no streamflow data are available is a 

crucial task in engineering practice, particularly for structural design and floodplain 

management. Inadequate understanding of extreme peak flows at ungauged sites results in the 

incorrect estimation of flood risk with important societal consequences. When streamflow data 

are available, an “at-site” flood frequency analysis can be developed using probability 

distribution fitting techniques to extract peak flow quantiles associated with small exceedance 

probabilities. In contrast, peak flow quantiles at ungauged sites are regularly estimated with a 

regional statistical analysis of peak flow quantiles from neighboring gauged sites. This regional 

statistical analysis is part of the framework of the Regional Flood Frequency Analysis (RFFA), 

which uses regression analysis techniques to study the connection between peak flow quantiles 

and different explanatory variables to develop empirical regional flood-frequency estimation 

equations. This methodology depends on observations of annual maximum flows over 

homogeneous regions (e.g., Smith et al. 2015; Srinivas et al. 2008; Haddad et al. 2012; Wan et 

al. 2012). However, many regions of the world remain poorly gauged or have experienced 

dramatic changes in land use or climate that make past observations less useful. To remedy this 

situation, we need methodologies to estimate flood frequencies based on physical principles of 

water movement and general knowledge of the geographic and geomorphologic setting of the 

upstream catchment for the location of interest. 

When making the leap from RFFA to physics-based estimations of flood frequencies, it is 

important to identify the scaling patterns revealed by data in the physical system where floods 

occur (i.e., watersheds and river networks). We can study these scaling patterns by means of 
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power laws describing the change of peak flows with respect to a length scale (e.g., drainage 

area). Then we can interpret the power law structure in peak flows as the systematic increase in 

the maximum discharge (Q) for a specific recurrence interval or quantile (p) as a function of the 

drainage area (A), which implies that 𝑄𝑝 = αp𝐴ϴ𝑝. This scaling feature arises from scale-

invariant systems with self-similarity properties (Gupta, et al., 2007) and it seems to reflect a 

fundamental symmetry of nature (Schroeder, 2012). Two scaling parameters control the change 

of peak flows: the intercept (α) and the scaling exponent (ϴ). Basically, an understanding of the 

factors governing 𝛼 and 𝜃 is crucial for the development of regional equations to estimate peak 

flows at ungauged sites, and to meet our increasing need to understand how to adapt these 

regression parameters in future climatic scenarios (Burns, et al., 2015; Gupta et al., 2007).  

Fuller (1914) was the first to connect the power-scaling structure to a statistical 

framework for peak flow data for the United States; however, significant questions have 

emerged, and many remain unanswered with regard to the physical controls and hydrologic 

variables governing power law–scaling structure in peak flows. Dawdy et al. (2012) provided a 

detailed explanation of the origins and early developments of flood-scaling methods. Most of the 

progress in our understanding of the scaling structure of peak flows has focused on quantifying 

the variables that control the value of α and ϴ. For instance, a number of researchers have 

quantified the role of rainfall properties, such as instensity, duration, and spatial coverage, as key 

players in determining the scaling parameter values (e.g., Gupta et al. 1996; Jothityangkoon & 

Sivapalan 2001; Mandapaka et al. 2009; Robinson & Sivapalan 1997). Mantilla et al. (2006) 

studied flood scaling in real river networks, generalizing the results of previous studies (Gupta & 

Waymire 1998; Menabde & Sivapalan 2001; Morrison & Smith 2001). Furey et al. (2007) 

evaluated the flood-scaling dynamic for 148 rainfall-runoff events, demonstrating the strong 
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influence of depth, duration, and spatial variability of excess rainfall on the scaling parameters.  

These results encoruraged new studies to more deeply explore the scaling structure vis-à-vis 

rainfall properties. Examples of this include: Ayalew et al. (2014a); Ayalew et al. (2014b) and 

Ayalew et al. (2015), which demonstrated clear connections between rainfall properties and 

scaling parameters at different spatial scales. Ayalew et al. (2014a) used rainfall-runoff model 

simulation results to study how the rainfall intensity, duration, hillslope overland velocity, and 

channel flow velocity affect the scaling parameters in three small basins (252, 520, and 1082 

km2, respectively) in a spatial scale study of the Cedar River basin, which has a drainage area of 

~17,000 km2.  In a subsequent study, Ayalew et al. (2015) analyzed actual data and showed the 

interplay between duration and depth of excess runoff with scaling parameters for 51 rainfall-

runoff events at the mesoscale Iowa River basin, which has a drainage area of 32,400 km2. This 

study demonstrated that even at this large scale, flood scaling still dominates.  In a more 

extensive study of the scaling parameters structure, Kroll (2014) showed the scaling exponent 

structure in the United States, defining 18 water regions.  In a further exploration of this course 

of study, Medhi and Tripathi (2015) explained the connections between basin attributes and 

scaling exponents, defining homogenous regions based on the region-of-influence method and 

showing evidence of simple-scaling for regions where snowfall dominates the total precipitation.  

In addition, these results suggest small flood-scaling exponents for regions with large soil 

moisture storages and high evapotranspiration losses, as well as significant overland flow 

fractions when compared to base flow. These studies represent an outstanding advance in the 

understanding of the flood-scaling structure for several spatial domains, a range of basin sizes, 

and their connection to rainfall and catchment properties.  
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Despite the contributions of the previous studies to our understanding of the physical 

controls behind the flood-scaling parameters, the scaling theory of floods needs to be used in 

concert with several well-known problems in statistical hydrology to achieve a proper 

engineering application in flood regionalization. These problems can vary from limitations in 

peak flow observations (sampling errors) up to selection of an inadequate model structure for 

peak flows (epistemic errors). In this dissertation, I examine these aspects in five specific studies 

(Chapter 2 to Chapter 6). A summary of each chapter is presented in the following section. 

1.2. Overview of Thesis Chapters 

1.2.1. Spatial Patterns of Peak Flow Quantiles Based on Power-Law Scaling in the 

Mississippi River Basin 

This chapter introduces the scaling variability of peak flows by means of a spatial 

analysis of these peak flows for different drainage area sizes in the Mississippi River Basin 

(MRB), based on the power law relation between flood quantiles (𝑄𝑝) and drainage areas (𝐴), 

expressed as 𝑄𝑝 = α𝑝𝐴θ𝑝 . This chapter addresses three specific objectives:  

(1) Characterize the spatial structure in α and ϴ within the MRB.  

(2) Evaluate the changes in α and ϴ for different flood frequencies and spatial regions.  

(3) Unmask regional differences in flood magnitudes and flood frequency signatures for 

specific drainage areas. 

To meet these specific objectives, I used data from 5,137 streamflow gauges with peak 

flow records and the USGS Hydrologic Unit Code (HUC) catchment organization framework to 

estimate the scaling parameters (α𝑝 and θ𝑝) at multiple spatial disaggregation levels, including: 

the complete Mississippi River Basin (MRB), six major MRB sub-regions (HUC-2), and finally, 

84 medium-scale catchments (HUC-4). The analysis at the HUC-4 level exposed remarkable 
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regional flood patterns in θ𝑝 and α𝑝, which I used to estimate peak flows at the 2.33- and 100-

year return periods at multiple spatial scales, including 1-, 100-, 1,000-, and 10,000-km2 drainage 

areas.  The results expose a peak flow quantile relation that varies as a function of region and 

drainage area, demonstrating that regions with higher peak flow quantiles vary with respect to 

the watershed size in the MRB.  Mainly, I found that the cluster of higher floods extends from 

the center to the eastern MRB for drainage areas from 1 km2 to 10,000 km2.  Conversely, the 

clusters of lower 2.33-year floods are preserved in the western MRB for the same range of 

drainage areas.  The results presented in this chapter demonstrate that the flood-producing 

mechanisms vary with respect to drainage area size and region. This provides a starting point for 

quantitative description of the physical processes that dominates the variability of flood-

producing mechanisms, such as river network structures. 

1.2.2. The Influence of Spatial Variability of Width Functions on Regional Peak Flow 

Regressions 

This chapter studies the relationship between the variability in river network structure and 

the regional variability of peak flows. I define three specific objectives in this chapter: 

(1) Capture the variability of the river network structure by means of Width Function 

Descriptors (WFDs). 

(2) Identify the WFDs that explain the regional peak flow variability of synthetic uniform 

rainfall events. 

(3) Explore the WFDs as explanatory variables in regional regressions of peak flow 

quantiles. 

To address these specific objectives, I explored 34 WFDs to represent the river network 

structure, in addition to drainage area, as potential candidates to explain the regional peak flow 



www.manaraa.com

6  

variability. First, I used hydrologic simulations of uniform rainfall events with variable rainfall 

duration and constant rainfall intensity for 147 watersheds across the state of Iowa. I 

demonstrated that WFDs can explain the spatial variability of peak flows for individual rainfall-

runoff events under idealized physical conditions. This theoretical exercise indicates that the 

inclusion of WFDs should drastically improve regional peak flow estimates, reducing the Root 

Mean Square Error (RMSE) by more than half compared to a regression model based on 

drainage area only.  

I followed the simulation with an analysis of estimated peak flow quantiles from 94 

stream gauges in Iowa to determine if the WFDs have a similar explanatory power. The 

correlations between WFDs and peak flow quantiles are not as high as those for simulated 

events. This indicates that results from event-scale simulations do not translate directly to peak 

flow quantiles. Other physical and statistical aspects, including sampling errors and the number 

of streamflow gauges, influence the spatial variability of peak flow quantiles. I will explore this 

last finding in more detail in the following chapter. 

1.2.3. Examining Observed Rainfall, Soil Moisture, and River Network Variabilities on 

Peak Flow Scaling of Rainfall-Runoff Events with Implications on the Regionalization of 

Peak Flow Quantiles 

This chapter examines the flood scaling of observed peak flows associated with a 

probability of exceedance (𝑄𝑝) or a specific rainfall-runoff event (𝑄𝑅), with respect to drainage 

area (A) in a framework of peak flow regionalization. I explored the effects of actual rainfall and 

soil moisture variabilities, as well as the effect of the river network structure, on the scaling of 

peak flows for 85 rainfall-runoff events and peak flow quantiles from the Partial Duration Series 

observed at 43 streamflow gauges in the Iowa River Basin. I established empirical evidence to 

address two questions:  
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(1) What controls the performance of scaling relations for observed 𝑄𝑅?  

(2) What is the interplay between sampling error and the selection of explanatory 

variables in the construction of regional regression models for 𝑄𝑅 and 𝑄𝑝?  

For the first question, I found that the magnitude of slope in the scaling of the rainfall 

intensity fields with respect to A controls the scaling performance of 𝑄𝑅. Regarding the second 

question, I demonstrated that the inclusion of river network descriptors must improve the 

regional equations to estimate peak flow quantiles; however, this result could be rejected because 

of sampling errors in the regression analysis. 

1.2.4. Using Physically-Based Synthetic Peak Flows to Assess Local and Regional Flood 

Frequency Analysis Methods 

This chapter evaluates the role of sampling errors and epistemic errors associated with 

local and regional methods to estimate peak flow quantiles (PFQs). I used regional peak flow 

distributions derived from a combined framework of observation-driven Stochastic Storm 

Transposition and a distributed hydrologic model. I evaluated four common PFQ estimation 

methods using synthetic peak flows at 5,000 sites in the Turkey River Watershed. I first used at-

site flood frequency analysis employing the Pearson Type III distribution with L-moments and 

Method of Moments. Then I pooled regional information using: the index flood method, quantile 

regression, and parameter regression. This experiment allowed me to quantify the error 

components stemming from epistemic assumptions, parameter estimation methods, sample size, 

and, in the regional approaches, the number of “pooled” sites. The specific objectives of this 

chapter are as follows: 
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(1) Compare the estimates of peak flow quantiles (PFQs) between the at-site flood 

frequency analysis (ASFFA), the Index Flood Method (IFM), the quantile regression 

technique (QRT), and the parameter regression technique (PRT). 

(2) Evaluate the epistemic errors in the PFQ estimation for the four techniques, and of 

sampling errors as a function of sample size and the number of pooled sites for IFM, 

QRT, and PRT.  

(3) Evaluate the impact of different intersite peak flow dependency structures in the 

sampling of peak flows for the estimates of PFQs based on IFM, QRT, and PRT. 

(4) Explore the different geomorphologic factors to explain the regional variability of 

skewness. 

The results demonstrated that for regional methods, the inability to capture the spatial 

variability of the skewness of the peak flows dominates epistemic error. The study also 

demonstrated that this variability could be partially explained by river network structure and the 

predominant orientation of the watershed. 

1.2.5. Estimation of Historical-Annual and Historical-Monthly Scale-Invariant Flow 

Duration Curves: With Implementation for the State of Iowa 

This chapter presents an extension of flood scaling theory as applied to streamflow distributions 

for the construction of historical-annual and historical-monthly flow duration curves (FDC) for 

agricultural, unregulated, and ungauged sites. The specific objectives in the construction of the 

proposed FDCs are as follows: 

(1) Estimate FDCs with a single explanatory variable for an easy implementation.  

(2) Fit a continuous and monotonic FDC for a representative range of quantiles. 
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(3) Estimate FDCs for both historical and monthly scales to capture the seasonal streamflow 

variability. 

I explored the performance and the regional dependence of four different regression models to 

estimate daily flow quantiles (𝑄𝑝), with probabilities of exceedance (𝑝) ranging from 0.01 to 

0.99. I based the construction and analysis of the four regression models on scale-invariance of 

𝑄𝑝 with respect to drainage area (A) or mean annual flow (𝑄̅). I implemented the procedure 

using data from 74 gauged sites in Iowa. The results demonstrate that the multi-scaling 

framework of 𝑄𝑝 with respect to 𝑄̅ provides the most accurate FDC estimates that are region-

independent within Iowa’s physical characteristics. I developed a piecewise continuous function 

to estimate the scaling parameters as a function of 𝑝, allowing estimations of continuous FDCs 

using independent estimates of 𝑄̅. A validation test using data from 40 gauges (not employed in 

developing the regression equations) shows that the methodology performs similarly for 

historical-annual FDC estimates when compared to the methodology that the U.S. Geological 

Survey (USGS) developed for Iowa. For discharges with 𝑝 values larger than 0.6, the proposed 

methodology exhibits lower, but still acceptable, performance. Two features make the proposed 

methodology attractive for FDC estimation: first, it is simpler to use and implement than the 

USGS methodology because it only requires estimates of 𝑄̅; and second, it provides reliable 

FDC estimates at monthly scales that are otherwise unavailable. I present an example in which 

we used FDC estimates at ungauged sites to create streamflow frequency maps to categorize 

flows predicted in real time by a distributed hydrologic model implemented for Iowa. 
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[1] Adapted from: Perez, G., Mantilla, R., & Krajewski, W. (2018). “Spatial patterns of peak 

flow quantiles based on power-law scaling in the Mississippi River basin”. In A. A. Tsonis (Ed.), 

30 Years of Nonlinear Dynamics in Geosciences. Springer. 

CHAPTER 2: SPATIAL PATTERNS OF PEAK FLOW QUANTILES BASED ON POWER-

LAW SCALING IN THE MISSISSIPPI RIVER BASIN [1] 

2.1. Introduction  

I start examining the Regional Flood Frequency Analysis (RFFA) to estimate flood 

quantiles at ungauged sites by means of a power law model with respect to drainage area. This 

power law (see Equation 2-1) represents the systematic increase in the maximum discharge (Q) 

for a specific quantile (p) as a function of the drainage area (A) as, 

Q
p

= αp𝐴ϴ𝑝        Equation 2-1 

The rate of increase is controlled by two scaling parameters: the intercept (αp) and the 

scaling exponent (ϴ𝑝). As was mentioned in the Chapter 1, Multiples studies have explored 

different approaches to quantifying the variables that control the value of α and ϴ. These studies 

represent an outstanding advance in the understanding of the flood scaling structure for several 

spatial domains, range of basin sizes, and their connection with rainfall and catchment 

properties; however, none of them have demonstrated how the differences of scaling parameters 

are controlling the flood magnitude for different drainage size areas in a specific large spatial 

domain such as the Mississippi River Basin (MRB). 

This chapter addresses three specific aspects: (1) characterize the spatial structure in α 

and ϴ within the MRB; (2) evaluate changes in α and ϴ for different quantiles and spatial 

regions; and (3) unmask regional differences in flood magnitudes and flood frequency signatures 

for specific drainage areas. 

Regarding (1) researchers have explored in depth the existence of flood scaling for flood 

quantiles and flood events in different basin sizes (Furey et al. 2007; Ayalew et al. 2014a; 

Ayalew et al. 2014b; Ayalew et al. 2015; Medhi & Tripathi 2015), but the power law structure 
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for flood quantiles in a large domain such as the MRB is still unknown.  Therefore, research is 

needed to determine the upper bound, if exists, in the spatial limit over the watershed domain. 

Regarding (2) the understanding of the characterization of α and ϴ across space need to 

be improved. Although, the scaling parameters change across different hydrologic conditions 

(Medhi and Tripathi 2015), we want to determine if these changes exhibit gradual or abrupt 

shifts in space thus enabling possible connections between scaling parameters and spatial 

patterns in hydrologic signatures. 

Regarding (3), the flood scaling framework allows us to analyze floods in specific 

drainage areas; therefore, I will use the different values of α and ϴ across the spatial domain to 

compare the flood changes among spatial locations, drainage areas, and flood quantiles. These 

results should help to identify the spatial locations and drainage area magnitudes in which flood 

quantiles are more extreme. 

The rest of this chapter is organized as follows.  A section describing the study area and 

peak flow data, including the hydrologic variability in the region, watershed boundaries and 

spatial units of analysis, number of peak flow gauges, and the type of regression analysis to 

estimate the scaling parameters.  Consecutively, I present the different methods for revealing 

flood patterns, testing of regional homogeneity, and identification of simple-scaling or multi-

scaling structures in the MRB. Subsequently, I report and discuss results, emphasizing 

characteristics of flood scaling across scales for different sub-regions, and provide insights into 

regional homogeneity based on flood scaling, and flood patterns for different watershed sizes.  I 

conclude addressing the importance and consequences of the main findings of this chapter, 

proposing future work around the connections between scaling parameters and mechanistic 

processes behind floods. 
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2.2. Peak Flow Data in the Mississippi River Basin 

One of the largest continental basins in the world, the MRB, is characterized by diverse 

hydrologic, climatic, and geomorphologic settings.  The MRB drains an area of almost 3 million 

km2 and is significantly impacted by human activity due to industrial and agricultural practices.  

From a hydroclimatological perspective, there are strong gradients in rainfall, snowfall, 

evapotranspiration, and temperature across the watershed at multiple temporal scales.  These 

geophysical properties make the MRB a good candidate to understand the spatial variability in 

the scaling structure of floods.  This study includes only those stream gauge locations that drain 

watersheds smaller than 10,000 km2 to guarantee that the information represents the flood 

diversity inside a particular HUC partition, avoiding biases introduced by gauges in large rivers 

that flow through a HUC (e.g. the Mississippi River) that may be influenced by large scale 

regulation and with flow regimes that result from integrating multiple climate regimes. 

Streamflow in the MRB are routinely estimated at 7,587 gauged locations that record 

peak flows, managed by the U.S. Geological Survey (USGS).  The USGS peak flow data is 

easily accessible by web services (http://nwis.waterdata.usgs.gov/usa/nwis/peak).  The USGS 

records maximum annual floods at specific gauge sites, which are the inputs for the quantile 

estimation related to different probabilities of exceedance (also expressed as the “return period”). 

I used the guidelines for determining peak flow frequency outlined in the USGS Bulletin 17B. 

This procedure uses the probability distribution Log Pearson Type 3 with the incorporation of 

outlier treatments, flows affected by regulation in dams, estimation of the regional skew, and 

historical flood information.  The complete method is incorporated in the software PeakFQ 

(Flynn et al. 2006).  I used the PeakFQ software to estimate the peak flow quantiles for each 

location.  I exclude peak flow data affected by dams or gauges with annual peak flow records 

reported as zero.  This last condition arose because some gauges present long records of annual 
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floods, but some have values equal to zero.  These could be a consequence of long dry periods in 

small basins or instrument errors.  For the regression analysis section, I only considered the 

gauges with more than 10 years of record period which gives a total of 5,137 gauges. 

In order to analyze the variability of scaling parameters 𝛼 and 𝜃 over different spatial 

scales and quantiles, I segmented the Mississippi River basin.  For this purpose, three levels of 

spatial discretization are used.  I used the spatial hydrological units (HUC), defined by the USGS 

(Seaber et al. 1987).  The largest spatial unit is the complete Mississippi River basin.  The second 

is the HUC-2 level with six sub-regions, and finally the HUC-4 level which partitions the MRB 

into 84 sub-regions.  Figure 2-1 shows the spatial definition of the three levels of analysis and 

Figure 2-2 illustrates an example of the spatial segmentation in the flood scaling from Level 1 to 

Level 3. 

2.3. Scaling Patterns of Flood Data 

I selected two methods to describe spatial patterns of scaling in peak flows in the MRB. 

First, I calculated a flood Severity Index (SI), defined as the ratio between the peak flows with a 

return period of 100 years and the mean annual flood.  In this calculation the mean annual flood 

is represented as the peak flow with a return period of 2.33 years.  I used these results as the 

starting point in creating the relationship between the spatial pattern of floods, physical controls, 

and hydrologic conditions across space. 

Second, I fitted a power law function between peak flows and drainage using a Weighted 

Least Square (WLS) regression in each of the regions defined by the HUC partitions of the 

MRB. The WLS reduced the uncertainty in the estimation of the scaling parameters, because 

peak flow gauges with few records will have larger uncertainty in the estimation of peak flow 

quantiles in comparison with peak flow gauges with larger records.  Therefore, the length of the 
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peak flow record is used as weight in the WLS regression.  To illustrate the effect of considering 

the WLS rather than a standard Ordinary Least Square (OLS) regression, the Figure 1-3 show the 

comparison of scaling parameters (𝛼 and 𝜃) for the 84 sub-regions at HUC-4 Level for the 2.33 

and 100 years of return period.  Although Figure 1-3 show small changes in 𝛼 and 𝜃 between 

WLS and OLS, these could be translated as important differences in the estimation of the peak 

flow quantiles along the MRB. For this reason, it is important to use the WLS regression in order 

to reduce the uncertainty introduced by peak flow gauges with few records. The regression for 

the entire MRB included all 5,137 gauges.  The number of gauges in the HUC-2 decomposition, 

which defines six sub-regions of the MRB, ranges from 338 to 1,601.  Finally, the number of 

gauges defined by the HUC-4 decomposition with 84 sub-regions ranges from 6 to 195, with 

90% of the sub-regions containing more than 20 gauges. 

I conducted a separate analysis to explore the variability of peak flows and regional 

homogeneity across space.  I calculated the residuals from the power law function for the three 

analysis levels and displayed them spatially.  These residuals were organized according to their 

signs (positive or negative residuals).  This approach helped us recognize the existence of spatial 

clusters in the distribution of peak flows, caused by regions with higher or lower floods.  This 

procedure provides a qualitative method to assess the regional homogeneity of floods in which 

the flood scaling is described only by drainage area (Gupta et al. 1995).  

I mapped the values of θ𝑝 and α𝑝 for the 84 sub-regions to reveal the spatial patterns 

behind the scaling parameters for the 2.33- and 100-year return periods. These plots represent the 

spatial signatures of floods synthetized in two parameters (θ and α) across the drainage areas and 

return periods. In particular, I used the estimated power law formulas for each HUC-4 partition 

to estimate peak flow quantiles of 2.33- and 100-year return period for drainage areas of 1, 100, 
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1,000 and 10,000 km2. Finally, I estimated the flood SI for the same range of drainage area based 

on the power law formulas. These results allow us to analyze the spatial shifts of floods for 

different flood quantiles and spatial scales. 

2.4. Identifying the Type of Scaling 

Gupta (1995) defines simple-scaling when the scaling exponent in the power law 

regression between flood quantiles and upstream area remains constant for all flood quantiles, 

and multi-scaling when the scaling exponents change. I used the Potthoff analysis (Potthoff, 

1966) in order to test the null hypothesis 𝐻0: 𝜃2.33 = 𝜃100. The Potthoff analysis identifies if 

there is a significant difference in the regression exponents when data are separated in different 

groups. This analysis requires to perform a multiple linear regression to compare the regression 

coefficients for different peak flow quantiles. 

With a significance level of 5%, we can conclude that if the p-value is less than 0.05 the 

null hypothesis of simple scaling is rejected. But, if the p-value is greater than 0.05 we cannot 

reject the null hypothesis, leaving open the possibility of simple-scaling in the data. The test 

relies on three equations, 

𝑌[𝑖] = 𝑙𝑛(𝑄2.33) = 𝑙𝑛(𝛼2.33) + 𝜃2.33𝑙𝑛 (𝐴)     Equation 2-2 

𝑌[𝑗] = ln(𝑄100) = ln(𝛼100) + 𝜃100ln (𝐴)     Equation 2-3 

𝑌[𝑖,𝑗] = 𝑎 + 𝑏𝑋[𝑖,𝑗] + 𝑐𝐺[𝑖] + 𝑑𝐺[𝑖]𝑋[𝑖,𝑗]     Equation 2-4 

where X is the vector of drainage area repeated twice, since the drainage area is the same for 

Equation 2-2 and Equation 2-3. G is the dichotomous grouping variable (Dummy variable) 

coding one for the region i and zero for the region j. The coefficients in Equation 2-4 evaluate 

the difference in coefficients for Equation 2-2 and Equation 2-3. The coefficient d determines 

differences between 𝜃2.33 𝑎𝑛𝑑 𝜃100; therefore, I estimate the p-value for the coefficient d to test 
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the null hypothesis 𝐻0: 𝜃2.33 = 𝜃100. Then, if the p-value is less than 0.05 (significance level of 

5%), the null hypothesis of simple scaling is rejected. But, if the p-value is greater than 0.05 the 

null hypothesis cannot be rejected, speculating a possible simple-scaling feature. 

2.5. Testing Regional Homogeneity 

I assessed regional homogeneity using the Moran spatial autocorrelation (Moran, 1950) 

for the residuals of the scaling power law in space. I group the residuals of the power law 

regression as HOT: Positive residuals, and COLD: Negative residuals. Mainly, the Moran spatial 

autocorrelation evaluates if a pattern of a spatial variable is clustered, dispersed, or random based 

on the null hypothesis that the variable (residuals in our case) is randomly distributed in the 

space.  

I hypothesize that, if there is regional homogeneity over the scaling of peak flows the 

groups HOT-COLD should be randomly distributed in the watershed, showing that the floods in 

the region have a similar hydrologic response. But, if there are strong differences of flood 

responses along the watershed, HOT and COLD clusters will start to arise, breaking the regional 

homogeneity assumption in the flood scaling theory. The significance of the test is evaluated 

with a Z-score in which a Z-score of 1.96 rejects the null hypothesis with a significance level of 

5%, in such case the existence of a clustering pattern of residuals in the space is assumed and 

therefore the regional homogeneity is not reached. The Moran statistic is based on neighboring 

elements which are defined with a specific buffer distance. I evaluate the Z-score for a search 

distance between 100 km and 200 km assuming that this range is enough to consider the 

inclusion of different peak flow gauges at the watershed level of HUC-4. 
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2.6. Discussion and Analysis of Results 

2.6.1. First Insight of Spatial Pattern in Peak Flows 

Figure 2-4 shows the SI for all 5,137 peak flow gauges. The map shows a spatial pattern 

over the MRB that reveals strong differences between the eastern and western parts of the basin. 

This variability is attributed to the differences in precipitation and runoff generation mechanisms 

across the large spatial domain. In particular, western areas present SIs between 6 and 10, with a 

cluster in the northwest border with values around 2. 

Although the current study focuses on identifying flood patterns across the spatial scales 

and flood quantiles rather than explaining the processes that govern these patterns, I discuss 

some insights behind the spatial structure of the SI. Higher SI values in the west are connected to 

differences in flood mechanisms behind the frequent floods (i.e. the 2.33-year flood) and the 

infrequent ones (i.e. 100-year flood). In general, floods in this region are described with a 

combination of snowmelt in the winter season and higher precipitation in the spring season. The 

occurrence of periodic floods is more interconnected to one of these processes rather than both of 

them simultaneously. However, the 100-year flood (low probability of occurrence) could be 

connected to combinations of extreme conditions of these processes. An example of this dynamic 

are the floods in Montana, in which the periodic floods are related to only heavy rainfall in the 

spring; but the higher floods (with a return period greater than 50 years) are a result of a long 

period of snow accumulation without intermediate melting time, in conjunction with a high soil 

moisture content and a high rainfall in the region (Parrett et al. 1984). We could link the western 

cluster with SI values of 2 by the strong orographic controls in the southwest region of Montana. 

This control incentivizes convection of moisture, generating more rainfall in the area; becoming 

the dominant flood generation process. Consequently, the magnitude in the mean annual flood 

and the 100-year flood in this region is not very different (a flood severity index from 1 to 2). 
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Quantification of the relative role of these mechanisms would require the implementation of 

physics-based models to confirm or reject the hypothesis. 

In contrast, eastern Mississippi presents index values around 2 and 3; moving toward the 

center of the basin the dispersion increases, showing values between 2 and 5. This increase in SI 

allows us to speculate about a mix of processes behind the mean annual flood and the 100-year 

flood in the eastern region. Some findings reported by (Lavers et al. 2013; Villarini et al. 2014) 

have shown that climatological signatures from tropical cyclones and atmospheric rivers play an 

important role in the flood structure in the east and central part of the basin. Note that the central 

region of the MRB presents a high variance in SI values, with a transition between low values in 

the eastern region to high values in the western region. 

The results from examining the SI show a certain degree of spatial structure. 

Nevertheless, the analysis mixes peak flow gauges draining different watershed drainage areas, 

which can conceal scale dependent differences in a region. To reveal it, in the following sections, 

I analyze the power law structure between drainage area and flood quantiles described by power-

law scaling to expose the spatial structure of floods across watershed scales. 

2.6.2. Representations of Patterns in Flood Scaling 

The results for the 2.33-year flood at the MRB level show α2.33 equal to 1.97 and θ2.33 

equal to 0.60. On the other hand, at the HUC-2 level, the α2.33 ranges from 0.85 to 5.13, and the 

θ2.33 ranges from 0.53 to 0. 71 (see Figure 2-5). At the HUC-4 level, the α2.33 and θ2.33 values 

vary in the ranges of 0.11 to 8.83, and 0.18 to 0.91, respectively. 

Figure 2-6 shows the distribution of the scaling parameters for the 2.33- and 100-year return 

period, which leads us to use simple-scaling as our null hypothesis for scaling in peak flow 

quantiles in the MRB for the HUC-4 Level. Gupta (1995) defines simple-scaling when the 
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scaling exponent remains constant through the quantiles, and multi-scaling when the scaling 

exponents change for different quantiles. In general, we could presume that the simple scaling 

dominates in the MRB, by the similarity of distribution of the scaling exponents presented in 

Figure 2-6. A rigorous statistic test must be performed in order to evaluate the statistically 

significant difference between the scaling exponents of the 2.33- and 100-year return period. For 

this purpose the Potthoff analysis (Potthoff, 1966) is performed in order to identify the type of 

scaling in each sub-region at HUC-4 Level in the MRB testing the null hypothesis 𝐻0: 𝜃2.33 =

𝜃100. Figure 2-7 presents the estimated p-value for the 84 sub-regions at HUC-4 Level. Based on 

this result, I found 17 sub-watersheds with multi-scaling with clusters on the western and eastern 

Mississippi; and 67 sub-watershed with possible simple-scaling with a predominance in the 

center of Mississippi. 

I assessed the performance of the power law function for the three levels of analysis 

using the adjusted coefficient of determination (R2) (see Figure 2-2 for the MRB, Figure 2-5 for 

the HUC-2 level, and Figure 2-8 for the HUC-4 level). For the 2.33-year floods in the MRB I 

obtained an R2 of 0.58; at the HUC-2 level (six sub-regions), the R2 varies from 0.53 to 0.88; and 

at the HUC-4 level (84 watersheds), the R2 shows a range from 0.15 to 0.98, with a mean and 

standard deviation of 0.79 and 0.16 respectively. On the other hand, for the 100-year floods in 

the MRB the model has an R2 of 0.61; at the HUC-2 level the R2 varies from 0.50 to 0.84; and at 

the HUC-4 level (84 watersheds), the R2 shows a range from 0.17 to 0.95, with a mean and 

standard deviation of 0.74 and 0.17 respectively. In general, the HUC-4 decomposition provides 

a better performance of the power laws in explaining the scaling structure of floods. Figure 2-9 

shows six of the 84 regressions obtained for the 84 sub-regions at the HUC-4 level for the 2.33-

year flood. I found that only 11 of the 84 sub-regions show an R2 less than 0.3. I hypothesize that 
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the poor values of R2 (less than 0.3) presented at the HUC-4 level were caused by different 

hydrologic conditions generating flood in the sub-regions. I explore this further in the following 

sub-section. 

2.6.2.1. Spatial Clustering of Residuals from Power Law Functions for Different 

Decomposition Levels 

The determination (or lack) of regional homogeneity is essential to characterize flood 

producing mechanisms. I propose a strategy to determine homogeneity that follows the 

fundamental idea given by Gupta (1994), in which catchment size is the only variable needed to 

describe the flood scaling. I use the power law function between flood quantiles and drainage 

area to group the peak flow residuals as HOT (peak flow above the linear regression) and COLD 

(peak flow below the linear regression). This notation is associated with overestimation or 

underestimation of flood values by the regression. I hypothesize that, if the watershed is 

homogeneous with respect to the flood producing mechanism, the HOT and COLD gauges 

should be randomly distributed in the watershed, showing that the all floods are correctly 

represented by the parameter of drainage area in the power law function. Contrarily, if there is a 

strong difference in flood responses inside the watershed, HOT and COLD clusters will be 

apparent, representing different hydrologic conditions inside the watershed. Figure 2-10 shows 

the scaling plot where gauges are classified as having HOT or COLD residuals for the regression 

analysis at the full MRB level.  

I mapped the HOT-COLD classification in the three levels of analysis in Figure 2-11. The 

spatial structure at the MRB level, essentially the eastern region has higher floods than the 

western regions in any range of drainage area. Clearly, this pattern exists because of the strong 

difference in hydrologic conditions in the two regions. The HOT-COLD results at HUC-2 Level 

displays more mixed HOT and COLD patterns than for the full MRB; however, there are still 
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strong clusters of HOT and COLD floods in each of the six sub-regions. Finally, the HUC-4 

level, with 84 sub-regions, shows a more evenly spread pattern in the spatial distribution of HOT 

and COLD sites; however, a close inspection of patterns in the HUC-4 units reveals some units 

with significant HOT-COLD clusters. Even if at HUC-4 level basins are still presenting a degree 

of non-homogeneity, the number of gauges inside the basins is limited, therefore it is not 

possible to go to a more refined level of analysis. In order to make more evident the existence (or 

non-existence) of HOT-COLD clusters. 

I test the homogeneity assumption based on the spatial autocorrelation Moran in the randomness 

evaluation of the power-law residuals in the space for each of the sub-regions HUC-4 Level at 

the MRB. The spatial structure of the Z-score presented in Figure 2-12 demonstrates that the 

regional homogeneity is independent of frequency in some regions, showing watersheds with Z-

score higher than 1.96 for the 2.33-year floods, but lower than 1.96 for the 100-year floods. Also, 

the results show a dominant pattern of non-homogeneity in the MRB at the HUC-4 level, 

suggesting that a more refined spatial scale is necessary to obtain a more accurate representation 

of peak flows through scaling of floods. Figure 2-13 shows 6 examples of the classification of 

regional homogeneity based on the Z-score. Note that the HUCs 1010, 1029, and 510 have Z-

score less than 1.96 which is related to a regional homogeneity feature (randomness in the HOT-

COLD residuals), concluding that the flood scaling on these watersheds is well represented. 

However, the HUCs 1027, 508, and 1114 have Z-score higher than 1.96 in which is obvious the 

clustering of the HOT-COLD residuals in the space. Therefore, these watersheds must be refined 

based on the HOT-COLD clusters to properly capture the regional signature of floods across the 

scales 
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2.6.3. Spatial Flood Patterns Based on Power Law Formulas 

In this section, I use the scaling parameters to explore regional flood differences and 

similarities as these values synthesize the flood processes in a scale-dependent quantity. The 

spatial structure in the 𝛼 and 𝜃 values for the return period of 2.33 and 100 years for each 

HUC-4 level is shown in Figure 2-14. Assuming a drainage area equal to 1 km2, Equation 2-1 

gives 𝑄𝑝 values equal to α𝑝. Therefore, the α𝑝 value can be interpreted as the flood quantile for 

the unitary drainage area (1 km2). Consequently, these values describe the pattern of floods for 

small watersheds with 1 km2 of drainage area along the Mississippi watershed. The α patterns in 

the west and central part of the Mississippi watershed show strong differences, with α2.33 values 

closer to 1 and 5, respectively, and α100 values closer to 10 and 55 in the west and central part, 

respectively. These results suggest that the 2.33-year floods for a watershed with a size of 1 km2 

in the central region of the Mississippi River basin are five times stronger in magnitude that the 

floods in the western part of the basin. The question that remains is if this spatial pattern is 

preserved for different watershed sizes, this will be addressed in the following section. 

The θ values represent the slope between drainage areas and floods in the log space, 

connecting the power rate in the flood increments across drainage areas. As we mentioned 

earlier, α is controlling floods with a unitary drainage area, however, changes in the α values are 

also impacting the other spatial scales. This means that a displacement in the intercept will 

modify the flood magnitude in direct proportion to the 𝐴θ value. In contrast, the θ magnitude 

affects the flood magnitude differently across the scales. The spatial patterns in α are 

completely different from the spatial structure of θ. An example are clusters of high θ 

values found in the west, east, and north of the basin. These values show a transition to 
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lower values towards the center of the basin, locating finally the lowest cluster of θ in the 

Midwest with θ values close to 0.2. 

2.6.3.1. Flood Patterns for Different Watershed Sizes 

The final step is to explore regional flood patterns combining θ and α. To reveal 

regional flood patterns along the Mississippi River basin, I normalized the peak discharges 

at the HUC-4 level, with the highest peak discharge over the 84 sub-regions for each 

quantile analyzed. Figure 2-15 shows the regional flood pattern for drainage areas of 1, 100, 

1,000 and 10,000 km2 for the 2.33-, and 100-year flood. The maps reveal different regional flood 

patterns for different watershed sizes and flood frequencies. Note that the regional flood patterns 

revealed at the 2.33-year flood and different values of drainage area (see Figure 2-15): the 

western floods remain stable across the range of drainage areas; however, the cluster of larger 

floods expands from the center to the eastern MRB for the drainage area from 1 km2 to 10,000 

km2. These results confirm the differences in flood producing mechanisms across drainage areas 

and across regions in the Mississippi River Basin. In the 100-year flood, we find similar spatial 

patterns with the presence of a cluster of maximum values in the center of the basin for drainage 

areas of 100, 1,000 and 10,000 km2. At the same time, in the eastern part of the MRB, a cluster 

of high floods emerges in the transition from 1 km2 to 10,000 km2.  

To highlight the variability of these regional flood patterns with respect to the drainage 

area, I grouped the HUC-4 Level in the Top 20 sub-regions with higher floods and the Top 20 

sub-regions with lower floods. Figure 2-16 shows the transition in space of the Top 20 sub-

regions with higher 2.33- and 100-year floods respect to the watershed size, with a displacement 

from the center to the eastern Mississippi from 1 km2 to 10,000 km2. Looking at the Top 20 of 

the lower 2.33-year floods the cluster in the northwestern Mississippi is preserved in the different 
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ranges of watershed sizes. However, the spatial pattern exhibited by the Top 20 of lower 100-

year floods is more dispersed with respect to the 2.33-year flood pattern. These results 

demonstrate that the flood producing mechanisms change not only in region, but also in drainage 

area magnitudes. 

2.6.3.2. Severity Index with Flood Scaling 

To improve the description of regional flood patterns for different frequencies and 

drainage areas, I calculated the severity index using the power law formulas calculated for each 

one of the 84 HUC-4 sub-regions. The severity index is referred to as the ratio between the 100-

year flood and the 2.33-year flood. Figure 2-17 presents the SI variability in the drainage area 

across the Mississippi River Basin described by the scaling parameters. Examining the results, 

we find that for a watershed size of 1 km2 there is a clear pattern of the index over space, with 

higher values of around 10 in the west, with a transition moving toward the center of the basin 

with index values of 4 and 7, and finally decreasing to values of 2 and 5 in the east. In addition, 

the increasing drainage area begins to transform the cluster of higher severity index values found 

in the west, showing more dispersion in this region. In contrast, the eastern cluster is more 

consolidated with the increasing of the drainage area, structuring a cluster with values around 2 

and 3. This result dissects the analysis of severity index calculated for each gauge in Figure 2-4 

by presenting patterns in flood ratios across sizes of drainage area. These results highlight the 

importance of discerning the watershed size from the smallest (1 km2), to medium-sized 

(100<A<1,000 km2), to largest (>10,000 km2) watersheds in flood estimation. 

2.7. Conclusions 

The flood scaling analysis performed in this chapter reveals a diversity of regional flood 

patterns using scaling parameters (θ and α) of the 2.33- and 100-year floods for different 
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drainage area values. I show that at HUC-4 Level of decomposition the power laws represent a 

satisfactory representation of peak flows; although the HOT-COLD pattern suggests that in some 

sub-regions the analysis can be improved with a refined level of analysis (e.g. HUC-6 Level). 

The number of gauges inside the basins is a limitation to evaluate a more refined scale.  

A remarkable result is the shift of regional flood patterns for different drainage sizes and 

for the 2.33- and 100- years flood at HUC-4 Level, in which the relative flood magnitude 

depends of the catchment size, showing a dynamic dependence of floods related to drainage area 

and spatial location. This result is especially strong in the spatial transition of the Top 20 regions 

with higher 2.33- and 100-year from the center to the eastern Mississippi. The results of this 

analysis provide clear signatures in flood producing mechanisms that should be explained from 

physical considerations. 

Several caveats are recognized in our study. I presented spatial patterns only up to 

watersheds smaller than 10,000 km2. This threshold was defined to guarantee the flood diversity 

inside of a particular HUC-4, eliminating the influence of gauges over large rivers that integrate 

different climate regimes and are more likely to be affected by regulation. In addition, the use of 

a different probability distribution could change the outcome of the flood quantiles estimations. I 

decided on using the standard methodology proposed by the USGS in the Bulletin 17B based on 

the probability distribution Log Pearson Type 3 as the best option for the flood quantile 

estimation because it is easily replicable thanks to the USGS PeakFQ software. 

This chapter represents an effort to quantify the structure of flood scaling in a range of 

drainage areas and flood quantiles. Most of the HUC-4 Level units present a satisfactory peak 

flow scaling, however, even in these units of analysis there are peak flow variabilities that cannot 

be explained just by the drainage area. Therefore, further analysis needs to be conducted in order 
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to capture this remaining variability, either by physical controls such as river network structures 

or statistical controls such as sampling errors and number of streamflow gauges used in the 

regression analysis. These aspects are explored with more detail in the following chapters. 
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Figure 2-1. Location of the units of analysis: Complete MRB, six major MRB sub-regions 

(HUC-2) and 84 HUC-4 sub-regions. Location of HUC 2-Digits 2:05 and HUC 4-Digits: 0531 

related to the flood scaling in Figure 2-2. 

  



www.manaraa.com

28  

 

Figure 2-2. Disaggregation in the flood scaling from the complete MRB to HUC-2 level (HUC- 2 – Digits: 05) to HUC-4 level (HUC 

4 –Digits: 0531); the regressions have 5136, 1029 and 110 peak flow gauges and R2 values of 0.27, 0.88 and 0.93 respectively. 
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Figure 2-3. Comparison of scaling parameters between WLS and OLS regressions. 
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Figure 2-4. Flood severity Index for the 5,137 peak flow gauges. 

 

  



www.manaraa.com

31  

 

Figure 2-5. Power law regression at spatial domain HUC-2 level (six sub-regions) 
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Figure 2-6. Histogram of scaling exponents and intercepts for the peak flow of 2.33 years and 100 years of return period at the HUC-4 

level. 
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Figure 2-7. Spatial pattern of the p-value to test the null hypothesis 𝐻0: 𝜃2.33 = 𝜃100 in the 84 

sub-watershed.  



www.manaraa.com

34  

 

Figure 2-8. Adjusted coefficient of determination (R2) for the power law with 2.33-year floods (left) and 100-year floods (right) at the 

HUC-4 level. 
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Figure 2-9. Power law in six HUC-4 sub-regions (HUC 4-Digits: 0512, 0513, 0601, 0507, 1007, 

and 0510). 

  



www.manaraa.com

36  

 

Figure 2-10. HOT-COLD plot of the power law with the 5,137 peak flow gauges located in the complete MRB. Red points identify 

the peak flow values above the regression and blue points identify the peak flow values below the regression. 
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Figure 2-11. Spatial pattern for the HOT-COLD analysis in the complete MRB, HUC-2 Level, and HUC-4 Level. Red points identify 

the peak flow values above the regression and blue points identify the peak flow values below the regression. 
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Figure 2-12. Map of the Z-Score in the 84 sub-watersheds for the 2.33 and 100 year of return 

period. 

  



www.manaraa.com

39  

 

Figure 2-13. Examples of regional homogeneity and non-homogeneity based on the Z-score in 6 

sub-watersheds in the MRB. 
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Figure 2-14. Scaling exponent and intercept at HUC-4 level for peak flows with return periods of 

2.33 and 100 years. 
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Figure 2-15. Normalized peak flows estimated with the power-law model for different return periods (rows) and magnitudes of 

drainage area (columns) at the HUC-4 level of analysis. 
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Figure 2-16. Top 20 sub-regions with higher (orange) and lower (green) peak flows for specific drainage area sizes and return period 

of 2.33 and 100 years at the HUC-4 level of analysis. 
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Figure 2-17. Flood severity index generated with the power law model for different magnitudes of drainage area at the HUC-4 level of 

analysis. 



www.manaraa.com

44 

[2] Adapted from: Perez, G., Mantilla, R., & Krajewski, W. (2018). “The Influence of Spatial 

Variability of Width Functions on Regional Peak Flow Regressions”. Water Resources 

Research. 

CHAPTER 3: THE INFLUENCE OF SPATIAL VARIABILITY OF WIDTH FUNCTIONS ON 

REGIONAL PEAK FLOW REGRESSIONS [2] 

3.1. Introduction 

The development of the regional flood-frequency equations can be described in four 

major steps: (1) estimation of “at-site” flood quantiles, (2) delineation of homogeneous regions, 

3) definition of explanatory variables, and 4) estimation of regression equations between peak 

flow quantiles and the explanatory variables over the regions (Eash et al., 2013). The USGS is 

the agency in charge of the development of regional flood-frequency equations for the entire 

United States (e.g., Eash et al., 2013; Mastin et al., 2016; Parrett et al., 2010). A detailed 

explanation of the origins and early developments of the RFFA in the United States is 

summarized in Dawdy et al. (2012). Multiple regionalization studies have identified drainage 

area (A) as the most important variable in the construction of these regional equations, which is 

consistent with the findings of Fuller (1914), who first identified the connection between peak 

flows and A by means of power laws. In addition to A, other explanatory variables such as mean 

annual precipitation, base flow index, basin perimeter, average basin slope, drainage density, and 

percentage of area underlain by a specific soil type are sometimes used in regional flood-

frequency equations. 

Ayalew & Krajewski (2017) indicated that only few states include the shape of the 

watershed as a variable in the development of regional flood-frequency equations. Then, most 

states are using regional flood-frequency equations assuming that catchments with the same A, 

but different shape and drainage network geometry are expected to have the same peak flow 

quantiles. This practice is in stark contrast to the long-standing research in hydrology that shows 

how the shape of a watershed and drainage network structure affects the streamflow fluctuations, 
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including the magnitude of the peak flow (Horton, 1932; Morisawa, 1958; Rinaldo et al., 1995; 

Sherman, 1932; Strahler, 1964; Taylor & Schwarz, 1952). However, the exclusion of the 

drainage network geometry can be explained because the peak flow quantiles used in regional 

flood frequency equations are a statistical characterization of a cumulative distribution function. 

Therefore, they are disconnected from the physical processes that occur during individual flood-

generating rainfall-runoff events (Dawdy et al., 2012; Furey et al., 2016; Wright et al., 2014). 

This motivates the need to study the relation of peak flow quantiles and peak flows from rainfall-

runoff events, with respect to the explanatory variables that capture the spatial distribution of the 

drainage network.  

This chapter explores the inclusion of Width Function Descriptors (WFDs) in the 

construction of regional peak flow equations. I derived 34 WFDs to study their relations with 

two types of peak flows. The first type comprised peak flows generated by a uniform rainfall-

runoff event via hydrologic simulations. The second type comprised peak flow quantiles derived 

by fitting probability distributions to actual annual peak flow observations. I demonstrated that 

WFDs can explain the regional peak flow variability from synthetic rainfall-runoff events but not 

for peak flow quantiles derived from annual peak flow observations, which may explain why 

most of the regional flood frequency equations for the United States do not include descriptors of 

the drainage network as explanatory variables. 

This chapter is organized as follows. The first section describes the study area and data 

used for the generation of WFs. This is followed by a detailed description of the 34 WFDs based 

on the geometric WF and two different WF normalizations. Subsequently, I describe the use of a 

hydrologic simulation framework to make connections between WFDs and peak flows for 

different rainfall durations and constant rainfall intensity. I explain the implications of these 
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results in a discussion section. The next section replicates the same analysis and discussion done 

for peak flow from rainfall-runoff events using observations-based peak flow quantiles. Finally, I 

summarize the main findings in a conclusion section. 

3.2. Study Area and Data Sources 

To investigate the interplay between the drainage network and peak flows, I used the drainage 

network for all the watersheds that drain into Iowa excluding the Mississippi and Missouri rivers, 

which respectively form the eastern and western boundaries of the state. The characterization of 

the drainage network topology is a key ingredient in the construction of the WFDs developed in 

Section 3.3. It also supports the structure of the hydrologic modelling framework used in this 

chapter, which I explain in Section 3.4.1. I used data provided by the National Hydrograph 

Dataset Plus Version 2 (NHDPlusV2) (Horizon System Corporation, 2016) for the extraction of 

the drainage network. The digital elevation model (DEM) provided by NHDPlusV2 is the 

National Elevation Dataset (NED) with a resolution of 1-arc-second (approximately 30-m). This 

DEM is a resampling from the higher-resolution NED of 1/3-arc-second (approximately 10-m). 

To ensure hydrologic consistency and agreement with the observed drainage network, the 

NHDPlusV2 products include a flow accumulation grid and flow direction grid derived from a 

DEM “burned” with the existing hydrography. 

The conversion from an accumulation grid to a meaningful drainage network is an ongoing 

research subject for hydrologists. The conventional approach is to use a unique contributing area 

or slope-area threshold, beyond which the hydrographical network is chosen (Sofia et al., 2011; 

Tarboton et al., 1991). Alternative approaches use the physical locations of the observed channel 

heads on the field (Orlandini et al., 2011), or morphological reasons to establish the headers of 

the drainage networks (Heine et al., 2004). I decided to use the traditional approach with a 
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unique contributing area threshold for the definition of the drainage network. I selected the 

threshold to maximize the drainage network density but at the same time to conserve an average 

hillslope area close to 0.4 km2, which we can consider a reasonable scale for development of 

surface processes at hillslope scale (Quintero & Krajewski, 2018; Quintero et al., 2016). I 

selected a minimum contributing area threshold of 0.2 km2 (222 cells), resulting in 409,756 

stream links with an average length of 620 m and an average hillslope area of 0.41 km2. 

Although the drainage network is sensitive to the threshold method, we can consider the drainage 

network derived with the previous parameters is accurate enough to capture the main structure of 

the spatial configuration of the drainage network across Iowa. 

For the extraction of WFs, 147 watersheds with outlets at USGS stream gauges and drainage 

areas ranging from 6.6 km2 up to 20,168 km2 are selected. These watersheds are distributed 

throughout Iowa (Figure 3-1); therefore, we can expect to capture many different drainage 

structures and WF forms. This variability is illustrated by selecting six watersheds grouped in 

three pairs (Figure 3-1). Each pair represents a different spatial watershed scale with respect to 

drainage area A. I used these three pairs to show how watersheds with similar drainage area but a 

different drainage network structure (Figure 3-2) can be expected to have different peak flow 

responses. 

The first pair has the same A of 521 km2 and consists of for the watersheds of Salt Creek 

(USGS Code: 05452000) and Old Man’s Creek (USGS Code: 05455100). Using the Bransby-

Williams equation (Martin et al., 1996), the time of concentration is equal to 1 day for Salt Creek 

and 1.4 days for Old Man’s Creek. These two watersheds were studied by Ayalew & Krajewski 

(2017), who found the watersheds are similar in terms of rainfall, land cover, and soil type 

characteristics, but different in terms of geometry of watershed shape. Old Man’s Creek is 



www.manaraa.com

48  

elongated compared to Salt Creek, which has a more circular shape. The second pair represents 

an increase in the spatial scale; the watersheds of the North Raccoon River (USGS Code: 

05482300) and the Thompson River (USGS Code: 06898000) have A and time of concentration 

of 1,813 km2 and 2 days, and 1,816 km2 and 3.4 days, respectively. The third pair represents the 

largest spatial scale formed by the watershed of the Cedar River (USGS Code: 05464000) with A 

of 13,328 km2 and time of concentration of 5.2 days, and the watershed of the Des Moines River 

(USGS Code: 05481300) with A of 14,120 km2 and time of concentration of 8.3 days. Although 

there is a 6% difference in drainage area for the last pair, it is still reasonable to compare them. 

Note that the watershed form of the second and third pairs can be considered a rescaled version 

of the first pair of watersheds. For instance, the watersheds of Old Man’s Creek, Thompson 

River, and Des Moines River are more elongated than their counterparts in terms of A which are 

the watersheds of Salt Creek, North Raccoon River, and Cedar River, respectively. 

3.3. Width Function 

The hydrologic literature includes a long list of descriptors of the morphometric variability of a 

watershed. For instance, Moussa (2003) shows that the geometric characteristics of a watershed 

represented by an equivalent ellipse can explain part of the peak flow variability for seven 

watersheds located in France. The study by Rai et al. (2017) compiles 36 morphometric 

parameters that had been previously explored by different authors (Black, 1972; Hack, 1957; 

Horton, 1932; Melton, 1957; Miller, 1953; Muelle, 1968; Schumm, 1956; Smart & Surkan, 

1967; Strahler, 1964). The best known morphometric descriptors are the Bifurcation Ratio, Area 

Ratio, Length Ratio, Basin Length, Basin Width, Basin Parameter, Elongation Ratio, Stream 

Density, and Main Channel Sinuosity. Although these descriptors contain important 

geomorphological information about the watershed form and drainage network characteristics, 
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none of them provides complete information about the complex distribution of the drainage 

network within a watershed. 

One of the most robust ways to represent the spatial distribution of a drainage network is by 

using the width function (WF) (Lee & Delleur, 1976). Several studies have confirmed the 

relation between WF and streamflow response (e.g., Vijay et al., 1988; Vijay et al., 1998; Ignacio 

Rodríguez-Iturbe, 2001; Mesa & Mifflin, 1986; Moussa, 1997; Naden, 1992; Rinaldo et al., 

1991; Snell & Sivapalan, 1994; Troutman & Karlinger, 1985; Veitzer & Gupta, 2001). For 

instance, the WF is easily connected to the peak flow response using the geomorphological 

instantaneous unit hydrograph (GIUH) (Bras and Ignacio Rodriguez-Iturbe, 1989; Vijay et al., 

1980; Kirshen & Bras, 1983; Rodríguez-Iturbe & Valdes, 1979; Rigon et al., 2001). The 

hydrograph generated by the GIUH under idealized conditions in which the surface water flows 

at constant speed without infiltration or other losses will match the WF form. This result 

demonstrates that the WF contains valuable information about the variability of peak flows from 

one watershed to another.  

The WF gives the number of links located at a flow distance “x” from the outlet and 

represents the essential features of the drainage network structure within a watershed (Shreve, 

1969). The WF has captured the interest of geomorphologists and hydrologists who study the 

interplay between drainage network structures and hydrologic responses. Various authors have 

focused on describing the WF using different approaches, such as iterated random pulse 

(Veneziano et al., 2000), deterministic fractal-multifractal (Puente & Sivakumar, 2003), and 

topologic and morphometric properties (Moussa, 2008), which have been used in similarity 

indices for channel network comparison and regionalization. For this study, I defined 34 WFDs 

which can be easily extracted from the WF. The 34 WFDs come from three different WF 
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formulations. The first type is based on the classic formulation of a geometric WF of stream 

links, and I refer to it as WF. The second type normalizes the WF with its base; I call this WF-at-

site. The third type normalizes the WF with respect to a regional WF as a function of A. This last 

normalized WF is referred to as WF-at-region. 

3.3.1. Descriptors of the WF 

The WF of a watershed in a discrete case can be defined as 

𝑊(𝑥) = 𝐶𝑜𝑢𝑛𝑡(𝑥 − ∆𝑥 < 𝐷(𝐶𝐿) < 𝑥)     Equation 3-1 

where 𝐶𝑜𝑢𝑛𝑡(X) is the count of stream links that satisfy the condition X, 𝐶𝐿 is the unique 

identification tag of a stream link, 𝐷(𝐶𝐿) is the distance from the link 𝐶𝐿 to the outlet of the 

basin, x is the distance to evaluate the WF, and ∆𝑥 is the width interval in x. The drainage 

network derived from NHDPlusV2 for the state of Iowa has an average stream link length of 620 

meters; therefore, I decided to use a ∆𝑥 equal to 1 km to provide a continuous representation of 

the count of stream links along the WF. Considering ∆𝑥 equal to 1, and the distance x limited to 

the longest stream link distance to the outlet, the Equation 3-1 can be rewritten as 

𝑊(𝑥) = 𝐶𝑜𝑢𝑛𝑡(𝑥 − 1 < 𝐷(𝐶𝐿) < 𝑥) 𝑤𝑖𝑡ℎ 𝑥 𝜖 [1,2, … , 𝐷𝐵]  Equation 3-2 

where 𝐷𝐵 is the longest stream link distance to the outlet. We can easily obtain the WF defined 

by Equation 3-2 from a histogram function with bin size equal to ∆𝑥 and vector input equal to 

the distances of the stream links to the outlet in km. Characteristics such as the maximum of the 

WF are connected to streamflow response in idealized conditions (e.g., GUIH with instantaneous 

injection of rainfall and constant velocity on the stream channel). This type of connection 

suggests that other WF descriptors could provide more insights about the variability of the peak 

flow response. I defined 12 descriptors for the WF derived from the Equation 3-2 that we can 

considered representative features of the WF structure and that can be connected to peak flow 
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responses. Most of these descriptors are based on three characteristic points of the WF: (1) the 

maximum of the WF and its corresponding location; (2) the centroid of the WF and its 

corresponding location; and (3) the right tail of the WF where the WF is equal to zero (i.e., 

maximum distance to the outlet). Figure 3-3A shows the location of these critical points for the 

WFs of Salt Creek and Old Man’s Creek. 

The 12 descriptors are as follows: (1) the maximum of the WF (𝑊𝑚𝑎𝑥); (2) the distance to 

the maximum (𝐷(𝑊𝑚𝑎𝑥)); (3) the base of the WF (𝐷𝐵), which is the same that the longest stream 

length in the watershed; (4) the mass of the WF (M), which can be interpreted as the area under 

the WF; (5) the center of mass in d-direction (𝑑̅); (6) the center of mass in W-direction (𝑊̅); (7) 

the volume of revolution with respect to the W-direction (𝑉𝑊); (8) mass of WF from 0 up to the 

distance to the maximum (𝑀[0,𝐷(𝑊𝑚𝑎𝑥)]); (9) mass of WF from the maximum up to the longest 

distance in the network (𝑀[𝐷(𝑊𝑚𝑎𝑥),𝐷𝐵]); (10) number of stream links per kilometer (𝑇𝐷); (11) 

rectangular area defined by the vertices (0,0) and (𝐷(𝑊𝑚𝑎𝑥), 𝑊𝑚𝑎𝑥) (𝑀𝑊𝐷); and (12) the 

rectangular area defined from the vertices (0,0) and (𝑑̅, 𝑊̅) (𝑀𝑊𝐷̅̅ ̅̅ ̅). For the mathematical 

formulation of these descriptors, see the Appendix. 

The main purpose of the WFDs is to identify the variability of different drainage network 

structures that are not captured by A. For instance, the 12 WFDs above are shown in Table 3-1 

for Salt Creek and Old Man’s Creek. Both watersheds have the same A of 521 km2 and 

approximately the same number of stream links. However, the WF for Salt Creek is close to a 

Gaussian shape, while the WF for Old Man’s Creek has a rectangular shape. The strong 

difference in WF is evident in at least nine of the descriptors presented in Table 3-1. For 

instance, the descriptors 𝑊𝑚𝑎𝑥, 𝑊̅, 𝑇𝐷, 𝑀𝑊𝐷, and 𝑀𝑊𝐷̅̅ ̅̅ ̅ represent a relative difference between 

29% and 58%, and the descriptors 𝐷(𝑊𝑚𝑎𝑥), 𝐷𝐵, 𝑑̅, 𝑉𝑊 represent a relative difference between -
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59% and -36% between the two watersheds. The mass of WF up to 𝐷(𝑊𝑚𝑎𝑥) is almost the same; 

therefore, the differences between 𝑀[0,𝐷(𝑊𝑚𝑎𝑥)] and 𝑀[𝐷(𝑊𝑚𝑎𝑥),𝐷𝐵] are close to zero. Strong 

relative differences for the other two sets of watersheds are also found. For the North Raccoon 

River and Thompson River pair, the pattern is similar to that of the Salt Creek and Old Man’s 

Creek pair, with the exception that the descriptors 𝑀[0,𝐷(𝑊𝑚𝑎𝑥)] and 𝑀[𝐷(𝑊𝑚𝑎𝑥),𝐷𝐵] show relative 

differences of 29% and -19%, respectively. The Cedar River and Des Moines River pair have a 

different pattern in the relative difference when compared to the other two pairs of watersheds; 

this is because the Des Moines River watershed has a higher number of links than the Cedar 

River watershed, which influences most of the descriptors defined in Table 3-1. 

3.3.2. Descriptors of the WF-at-site 

The 12 descriptors derived from the geometric WF illustrate the remarkable differences between 

watersheds with the same A, capturing part of the drainage network structure that is not 

represented by A. However, notice that most of these 12 descriptors have a strong dependence on 

A. For instance, if we increase A, the number of stream links (𝑇𝐿) and 𝐷𝐵will increase as well. 

Therefore, the descriptors related to 𝐷𝐵, such as 𝑀, 𝑑̅, 𝑊̅, 𝑉𝑊, 𝑀[𝐷(𝑊𝑚𝑎𝑥),𝐷𝐵], 𝑇𝐷, and 𝑀𝑊𝐷̅̅ ̅̅ ̅ will 

represent a dependence on A. The consideration of this scale dependence is important because in 

Section 3.4 the WFDs are used as explanatory variables in regional peak flow equations; strong 

dependence among explanatory variables will lead to collinearity problems in the regression 

analysis. Therefore, I decided to normalize the WF to avoid such collinearity problems. The 

distance of each stream link to the outlet (𝐷(𝐶𝐿)) is normalized with respect to 𝐷𝐵. Recall that 𝐶𝐿 

represents a tag to identify a specific channel, and if this tag starts from 1 with unitary 

increments up to 𝑇𝐿, the vector of the normalized distance of each stream link to the outlet can be 

defined as  
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𝐷[𝑁](𝐶𝐿) =
𝐷(𝐶𝐿)

𝐷𝐵
, 𝑤𝑖𝑡ℎ 𝐶𝐿 𝜖 [1,2,3, … , 𝑇𝐿]     Equation 3-3 

and the 𝐷[𝑁](𝐶𝐿) can be used to estimate the normalized width function WF-at-site as  

𝑊 (
𝑥

𝐷𝐵
= 𝑥[𝑁]) = 𝐶𝑜𝑢𝑛𝑡 (𝑥[𝑁] −

1

𝐷𝐵
< 𝐷[𝑁](𝐶𝐿) < 𝑥[𝑁]),  

𝑤𝑖𝑡ℎ 𝑥[𝑁] = [
1

𝐷𝐵
,

2

𝐷𝐵
, … ,1]        Equation 3-4 

where the super index N is referred to as Normalized. The WF-at-site provides a more robust 

structure without scale dependence because the base of the WF-at-site is equal to 1. The vector 

𝐷[𝑁](𝐶𝐿) will range from 0 to 1 for all the WFs-at-site. Therefore, I decided to extract 10 

descriptors of the WF-at-site based on analogous quantities related to probability distributions, 

such as moments and quantiles over the vector 𝐷[𝑁](𝐶𝐿). These statistics are the mean (𝐷[𝑁]̅̅ ̅̅ ̅̅ ), 

variance (𝑉𝑎𝑟(𝐷[𝑁])), skewness (𝑆𝑘(𝐷[𝑁])), kurtosis (𝐾(𝐷[𝑁])), first quartile (𝑞25(𝐷[𝑁])), 

second quartile or median (𝑞50(𝐷[𝑁])), and third quartile (𝑞75(𝐷[𝑁])). For this set of descriptors, 

I also included the descriptors 𝐷𝑊𝑚𝑎𝑥

[𝑁]
, 𝑀

[0,𝐷𝑊𝑚𝑎𝑥

[𝑁]
]

[𝑁]
 , and 𝑀

[𝐷𝑊𝑚𝑎𝑥

[𝑁]
,1]

[𝑁]
, which are related to the 

location of the maximum of WF-at-site. 𝐷𝑊𝑚𝑎𝑥

[𝑁]
 is the normalization of 𝐷𝑊𝑚𝑎𝑥

 with respect to 𝐷𝐵, 

𝑀
[0,𝐷𝑊𝑚𝑎𝑥

[𝑁]
]

[𝑁]
 is the area of WF-at-site from 0 up to 𝐷𝑊𝑚𝑎𝑥

[𝑁]
, and 𝑀

[𝐷𝑊𝑚𝑎𝑥

[𝑁]
,1]

[𝑁]
 is the area of WF-at-site 

from 𝐷𝑊𝑚𝑎𝑥

[𝑁]
up to 1. Figure 3-3B shows the location of the quartiles and 𝐷𝑊𝑚𝑎𝑥

[𝑁]
 for the WF-at-site 

of Salt Creek and Old Man’s Creek. See the Appendix for the mathematical formulation of these 

descriptors. 

Table 3-2 shows the values of these 10 descriptors of the WF-at-site for the six 

watersheds used as example cases. These descriptors show significant relative differences for 

each of the pairs of watersheds, proving that these WFDs can explain the WF variability without 

the scale dependence with A. For instance, the Salt Creek and Old Man’s Creek pair has relative 



www.manaraa.com

54  

differences between 4% and 113% for the descriptors of 𝐷[𝑁]̅̅ ̅̅ ̅̅ , 𝑆𝑘(𝐷[𝑁]), 𝐾(𝐷[𝑁]), 

𝑞25(𝐷[𝑁]), 𝑞50(𝐷[𝑁]), and 𝑀
[𝐷𝑊𝑚𝑎𝑥

[𝑁]
,1]

[𝑁]
. For the descriptors 𝑉𝑎𝑟(𝐷[𝑁]), 𝑞75(𝐷[𝑁]), 𝐷𝑊𝑚𝑎𝑥

[𝑁]
, and 

𝑀
[0,𝐷𝑊𝑚𝑎𝑥

[𝑁]
]

[𝑁]
, the relative differences are between -85% and -6%. 

3.3.3. Descriptors of the WF-at-region 

The WF-at-site is convenient because the scale dependence on A is removed. However, 

valuable information about the WF is excluded because the base of the WF-at-site is always 

equal to 1. This means that the variability of the longest stream length in the watershed, which is 

a strong descriptor related to the watershed shape (Horton, 1932; Schumm, 1956), is removed. 

Hence, I proposed an approach to normalize the WF by removing the scale dependence with 

respect to A and at the same time preserving the differences in the base of the WF for the same 

spatial scale. This normalized WF is based on an average WF estimated over a region, based on 

analysis of WFs from several watersheds. I call this normalized Width Function the WF-at-

region. 

The average (expected) WF is defined by two variables, the expected base of the WF 

(𝐸(𝐷𝐵)) and the expected number of stream links per kilometer (𝐸(𝑊̅)); both variables are 

defined with respect to A. I estimated the values of 𝐸(𝐷𝐵) and 𝐸(𝑊̅) with independent 

regression analysis using the WFs for the 147 watersheds across Iowa. The left panel in Figure 3-

4 shows results of these two regressions. Using these regressions, we can construct the expected 

WF for any site if we know the upstream area A. For instance, the right panel in Figure 3-4 

shows the expected WF for Salt Creek and Old Man’s Creek in green. These two expected WFs 

are equal because A is the same in both watersheds. The expected WF can be used as a reference 

to build the WF-at-region as 
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𝐷[𝑁𝑆](𝐶𝐿) =
𝐷(𝐶𝐿)

𝐸(𝐷𝐵)
        Equation 3-5 

𝑊[𝑁𝑆](𝑥) =
𝑊(𝑥)

𝐸(𝑊̅)
        Equation 3-6 

with 𝑊(𝑥) defined as Equation 3-2. The superscript NS denotes Normalized in Space. Figure 3-

3C shows an example of the final form of WF-at-region for the watersheds of Salt Creek and Old 

Man’s Creek. The reader should notice two characteristics about the WF-at-region. First, the 

bases of these WF at-region (𝐷𝐵
[𝑁𝑆]

) are different from 1. Second, the WF-at-region contains 

information about the residuals of the regression of 𝐸(𝐷𝐵) and 𝐸(𝑊̅) with respect to A. 

Therefore, the WF-at-region is independent of A and still represents variability over the 𝐷𝐵
[𝑁𝑆]

. 

For instance, for Salt Creek the value of 𝐷𝐵
[𝑁𝑆]

 is 0.7, which means that the 𝐷𝐵 is 30% lower than 

the 𝐸(𝐷𝐵). On the contrary, Old Man’s Creek has a 𝐷𝐵
[𝑁𝑆]

 of 1.1; therefore, the 𝐷𝐵 for Old Man’s 

Creek is 10% bigger than the 𝐸(𝐷𝐵) for watersheds within Iowa with A equal to 521 km2. 

I described this WF-at-region in the same fashion as we did in the geometric WF. Three 

characteristic points are located on the WF-at-region: (1) peak of the WF-at-region; (2) centroid 

of the WF-at-region; and (3) extreme on the right tail of the WF-at-region. Figure 3-3C shows 

the location of these critical points for the WF-at-region of Salt Creek and Old Man’s Creek. I 

extracted 12 descriptors from the WF-at-region: (1) the maximum of the WF-at-region (𝑊𝑚𝑎𝑥
[𝑁𝑆]

); 

(2) the distance to 𝑊𝑚𝑎𝑥
[𝑁𝑆]

 (𝐷(𝑊𝑚𝑎𝑥
[𝑁𝑆]

)); (3) the area ratio (𝐴𝑟) between the expected WF and the 

geometric WF; (4) the base of WF-at-region (𝐷𝐵
[𝑁𝑆]

); (5) the mass of WF at-region (𝑀[𝑁𝑆]); (6) 

mass of WF-at-region from 0 up to 𝐷(𝑊𝑚𝑎𝑥
[𝑁𝑆]

) (𝑀[𝑁𝑆]
[0,𝐷(𝑊𝑚𝑎𝑥

[𝑁𝑆]
)]

); (7) mass of WF-at-region from 

𝐷(𝑊𝑚𝑎𝑥
[𝑁𝑆]

)up to 𝐷𝐵
[𝑁𝑆]

 (𝑀
[𝐷(𝑊𝑚𝑎𝑥

[𝑁𝑆]
),𝐷[𝑁𝑆]

𝐵]
);  (8) the center of mass in d-direction (𝑑[𝑁𝑆]̅̅ ̅̅ ̅̅ ); (9) the 

center of mass in W-direction (𝑊[𝑁𝑆]̅̅ ̅̅ ̅̅ ̅̅ ); (10) volume of revolution with respect to W-direction 
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(𝑉𝑊
[𝑁𝑆]

); (11) rectangular area defined by the vertices (0,0) and (𝐷(𝑊𝑚𝑎𝑥
[𝑁𝑆]

), 𝑊𝑚𝑎𝑥
[𝑁𝑆]

) (𝑀𝑊𝐷
[𝑁𝑆]

); and 

(12) the rectangular area defined by the vertices (0,0) and (𝑑[𝑁𝑆]̅̅ ̅̅ ̅̅ , 𝑊[𝑁𝑆]̅̅ ̅̅ ̅̅ ̅̅ ) (𝑀𝑊𝐷̅̅ ̅̅ ̅
[𝑁𝑆]

). See the 

Appendix for the mathematical formulation of these descriptors. 

Table 3-3 shows the values of the 12 descriptors of the WF-at-region for the six 

watersheds used as example cases. The high relative differences in Table 3-3 verify that this 

approach can still be used to distinguish between WF structures without the scale dependence 

with A and preserves the variability in the bases of the WFs. For the pair of Salt Creek and Old 

Man’s Creek, the descriptors of 𝑊𝑚𝑎𝑥
[𝑁𝑆]

, 𝑊[𝑁𝑆]̅̅ ̅̅ ̅̅ ̅̅ , 𝑀𝑊𝐷
[𝑁𝑆]

, and 𝑀𝑊𝐷̅̅ ̅̅ ̅
[𝑁𝑆]

 represent relative differences 

between 32% and 57% and for the descriptors 𝐷(𝑊𝑚𝑎𝑥
[𝑁𝑆]

), 𝐷𝐵
[𝑁𝑆]

, 𝑑[𝑁𝑆]̅̅ ̅̅ ̅̅ , and 𝑉𝑊
[𝑁𝑆]

, the relative 

differences are between -59% and -36%. The number of stream links and the mass of WF-at-

region up to 𝐷 (𝑊𝑚𝑎𝑥
[𝑁𝑆]

) are almost the same in these two watersheds; therefore, the differences 

among descriptors 𝑀[𝑁𝑆], 𝑀[𝑁𝑆]
[0,𝐷(𝑊𝑚𝑎𝑥

[𝑁𝑆]
)]

, and 𝑀
[𝐷(𝑊𝑚𝑎𝑥

[𝑁𝑆]
),𝐷𝐵

[𝑁𝑆]
]
 are close to zero. These 

descriptors also show a significant relative difference for the pairs of North Raccoon and 

Thompson rivers, as well as the Cedar and Des Moines rivers. 

3.4. Connections between WFDs and Peak Flows 

In this section, I explore whether the WFDs can capture the variability of peak flows 

across the scales more accurately than can drainage area alone. I will explore two types of peak 

flows: (1) from hydrological simulations of rainfall-runoff events, and (2) quantiles derived from 

annual peak flow observations. 

3.4.1. WFDs and Peak Flows from Rainfall-Runoff Events 

I used the hydrologic distributed Hillslope Link Model (HLM) adopted at the Iowa Flood 

Center (IFC) for the state of Iowa (e.g., Krajewski et al., 2017; Mantilla & Gupta, 2005; Quintero 
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et al., 2016). The key features of HLM is the decomposition of the landscape into hillslope-

channel-link components, and the use of the mass and momentum conservation equations at the 

hillslope-channel-link scale. The model describes changes in storage components using a system 

of non-linear ordinary differential equations that are solved using a parallel implementation of 

Runge-Kutta methods that allow for asynchronous integration (Small et al., 2013). This 

hydrologic model is ideally suited for our simulation exercise because it makes predictions of 

streamflow fluctuations for every link in the river network. The river network matches the 

NHDPlusV2 dataset. I used a simplified setup for the rainfall-runoff events with a constant 

runoff coefficient of 0.3, constant hillslope overland flow velocity of 0.01 m/s, constant 

subsurface flow velocity of 0.005 m/s, and nonlinear streamflow routing described by Quintero 

et al. (2016). The initial states of the model are all equal to zero, which means that channel 

discharge, water ponded on the hillslope surface, and effective water depth in the hillslope 

subsurface are initialized to zero. The interested reader can refer to Quintero et al. (2016) for 

further details of the HLM construction. 

I applied uniform rainfall inputs with constant intensity of 6.35 mm/hr (1/4 inch per 

hour), and different rainfall durations of 5 min, 15 min, 30 min, 1 hr, 3 hr, 6 hr, 12 hr, 1 day, 2 

days, and 10 days. The total depth for each rainfall duration is 0.53, 1.58, 3.17, 6.35, 19.05, 

38.10, 76.20, 152.40, 304.80, and 1,524.00 mm, respectively. I conducted these hydrologic 

simulations for the entire state of Iowa, which includes the 147 watersheds of interest. The peak 

flows are extracted from the hydrographs obtained from the hydrologic simulations and used 

them as response variables for a posterior regression analysis with respect to the 34 WFDs and A. 

I used a multiple linear regression model with Ordinary Least Square (OLS) regression with a 

maximum of three explanatory variables to avoid overfitting. In addition, an exhaustive search 



www.manaraa.com

58  

method to select the final set of explanatory variables based on the Akaike Information Criteria 

with correction (AICc) is used. The selected explanatory variables must be statistically 

significant at the 95% confidence level. I investigated the correlation between the explanatory 

variables to assess potential multicollinearity problems. I used a Variance Inflator Factor (VIF) 

greater than 3 to remove variables with strong correlations. 

3.4.1.1. Results and Discussions: WFDs and Peak Flows from Rainfall-Runoff Events 

For uniform rainfall events over a watershed, rainfall duration controls the proportion of 

the watershed that is contributing to the peak flow response. This control can be understood in 

terms of two end members. The first end member occurs when the rainfall duration is greater 

than the time of concentration of a watershed. In this case, the entire watershed contributes to the 

peak flow response, and A is sufficient to explain the regional peak flow variability. The second 

end member occurs when the rainfall duration is instantaneous; here, the dominant control in the 

peak flow response is the structure of the drainage network (Mandapaka et al., 2009). In fact, for 

the case of a constant streamflow-channel velocity and without losses by infiltration or 

evaporation, the shape of the streamflow hydrograph is controlled by the WF. Therefore, the 

hydrologic simulations with different rainfall durations capture the variability between these two 

end members in which the drainage network structure and A have a role in controlling the peak 

flow response. Figure 3-5 shows the hydrographs obtained for four different rainfall durations 

over the six watersheds used as example cases. Note that the two hydrographs of each panel 

come from watersheds with similar A. These simulated hydrographs show that for rainfall 

durations shorter than the time of concentration, the drainage network influences the regional 

peak flow variability. However, the hydrographs get closer as the rainfall duration increases, 

which means that the control of the drainage network structure over the peak flow variability is 
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being reduced and the A is more dominant. Figure 3-6 quantifies the relative differences between 

the peaks of the hydrographs. For the Salt Creek and Old Man’s Creek pair, and the North 

Raccoon River and Thompson River pair, we saw a clear decreasing trend of the relative 

difference with respect to the increase of the rainfall duration. For instance, the Salt Creek and 

Old Man’s Creek pair starts with a relative difference of 125% in the peak flow for rainfall 

duration of 5 minutes, and it reaches 1% for rainfall duration of 5 days. The Cedar River and Des 

Moines River pair shows a different trend in which the relative difference remains close to the 

value of 30% for rainfall durations from 5 minutes up to 2 days. I presume that this difference 

remains around 30% because the rainfall duration from 5 minutes up to 2 days does not represent 

a large variability with respect to the longer times of concentration of 5.2 days for Cedar River 

and 8.3 days for Des Moines River. Note that for 5 and 10 days, the Des Moines River has a 

bigger peak flow, and therefore the relative difference is around -6%. This makes sense because 

most of the watershed is contributing to the peak flow, and the Des Moines River has a bigger A. 

Figure 3-7 shows the peak flows from the simulation with rainfall durations of 30 

minutes, 3 hours, 12 hours, and 5 days for the 147 sites across Iowa. These simulations reveal the 

strong relation between A, rainfall duration, and drainage network structure. Figure 3-7 shows 

the scale break of peak flows as a function of the rainfall duration. The scale break is explained 

by the previous argument that if the rainfall duration is larger than the time of concentration, 

drainage area is enough to explain the peak flow response in a regional domain. This argument is 

well illustrated for the peak flows with rainfall duration of 5 days, in which the drainage area is 

enough to explain the regional peak flow variability. However, for shorter rainfall durations such 

as 12 hours and watersheds with times of concentration longer than 12 hours, the drainage 

network will start to influence in the peak flow response. Therefore, for these cases, the regional 
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peak flow variability is not explained just by A. Visually, we found that the scale break is 500, 

300, and 100 km2 for the rainfall durations of 12 hours, 3 hours, and 30 minutes, respectively. 

The structure of the drainage network of each watershed causes the peak flow variability after 

this scale break. These results are consistent with previous findings reported by Mandapaka et al. 

(2009). 

I argue that the peak flow variability after the scale break can be explained using WFDs. 

Regression analysis results support this statement. I found that the A, 𝑞25(𝐷[𝑁]) and 𝐷𝐵
[𝑁𝑆]

 

explain with much greater detail the variability of the regional peak flow response, rather than 

the use of the drainage area alone. Figure 3-8 shows the results of the regression model using 

only A, and the model using A, 𝑞25(𝐷[𝑁]) and 𝐷𝐵
[𝑁𝑆]

 as explanatory variables. The model that 

includes WFDs demonstrates a significant improvement in capturing the regional peak flow 

variability, with a reduction of more than half for the Root Mean Square Error (RMSE). The 

model selection criteria AICc for the regression analysis after the scale break support the finding 

that the model with WFDs contains more information than the model using only A. 

For a complete examination of the role of the different WFDs in the regression models, 

Figure 3-9 shows the RMSE for some combinations of one, two, and three explanatory variables 

in the construction of the regional regression models for the peak flow responses for a rainfall 

duration of 12 hours. For the model with two explanatory variables, I fixed the drainage area A in 

addition to a second explanatory variable; and for the model with three explanatory variables, I 

fixed A and 𝐷𝐵
[𝑁𝑆]

 in addition of a third explanatory variable. For one explanatory variable, we 

can observe that the A, M, and 𝑀𝑊𝐷̅̅ ̅̅ ̅ have the lower RMSE of 156 m3/s. For two variables, the 

RMSE for the model using A and 𝐷𝐵
[𝑁𝑆]

 decreases up to 80 m3/s; and for three variables, the 
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model with A, 𝐷𝐵
[𝑁𝑆]

, and 𝑞25(𝐷[𝑁]) produces a reduction in the RMSE up to 58 m3/s. The 

selection of the best model was based on the AICc. 

The finding in this regression analysis suggests that the descriptors 𝑞25(𝐷[𝑁]) and 𝐷𝐵
[𝑁𝑆]

 

contain valuable information on the WF, which is connected to the peak flow response. 𝐷𝐵
[𝑁𝑆]

 can 

be interpreted as the residual of the Hack’s law (Hack, 1957). In fact, I noticed that we can 

reconstruct a simplified version of the WF formed by two blocks using the A, 𝑞25(𝐷[𝑁]), 𝐷𝐵
[𝑁𝑆]

, 

𝑇𝐿, and the 𝐸(𝐷𝐵) obtained from the regional regression between 𝐷𝐵 and A. This reconstructed 

WF has a base estimated from the product of 𝐷𝐵
[𝑁𝑆]

 and 𝐸(𝐷𝐵). The total area of WF is equal to 

𝑇𝐿, and this area can be distributed into two blocks delimited by 𝑞25(𝐷[𝑁]), with the first block 

having 25% of 𝑇𝐿, and the second block 75% of 𝑇𝐿. Examples of the reconstructed WF for the 

six watersheds used as example cases are shown in Figure 3-10. 

3.4.2. WFDs and peak flow quantiles 

Now, I investigate the connections between peak flow quantiles and WFDs. I selected 94 

gauges with more than 30 years of continuous records from the initial 147. For each one of these 

gauges, I estimated peak flow quantiles using the USGS estimation procedure explained in 

Bulletin 17C (England et al., 2015). This procedure assumes a Log Pearson Type III distribution 

for the data and recommends use of the Expected Moment Algorithm (EMA) including historical 

records and at-station skew to determine distribution parameters. I excluded sites with regulation 

or diversion of any kind. I used the estimated peak flow quantiles to perform a regional 

regression analysis with respect to our 34 WFDs and A for two different regions. First, I selected 

a region that includes the 94 selected gauges for the entire state of Iowa. Second, I used a sub-

region that includes the Iowa River Basin (see Figure 3-11), which contains only 25 peak flow 
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gauges with more than 30 years of records. I did this to determine if homogeneity in the region 

has a significant bearing in the results. The Iowa River Basin is chosen because it is contained in 

the Flood Region 2 of Iowa as defined by Eash et al. (2013), which to some extent, can be 

considered as a homogeneous in terms of hydrologic properties. The regression analysis 

procedure was the same as the one described in Section 3.4.1, but using the peak flow quantiles 

as dependent variables and the 34 WFDs and A as explanatory variables. 

3.4.2.1. Results and Discussions: WFDs and Peak Flow Quantiles 

The regional regression analysis for peak flow quantiles indicated that the WFDs 

explored in this study do not explain well the variability of peak flow quantiles in a regional 

domain. The best model selected in the exhaustive search with the different 34 WFDs uses only 

A as an explanatory variable (see Figure 3-12). We found this result for both the entire state of 

Iowa and for the Iowa River Basin. Iowa has large variability in soil types, land uses, and 

hydrologic responses (Eash et al., 2013). For that reason, I selected the Iowa River Basin to 

reduce these heterogeneities, and to be able to capture most of the influence of the drainage 

network structure over the response of peak flow quantiles. However, the regression analysis 

results demonstrate that the WFDs do not explain well the regional variability of the peak flow 

quantiles. We can rationalize this outcome as follows. First, the peak flow quantiles for different 

watersheds with the same probability of exceedance do not always come from the same rainfall-

runoff events, therefore the connection of peak flow response through the drainage network is 

lost. Second, the estimation of peak flow quantiles is subjected to sampling errors (number of 

peak flow observations) and epistemic errors (e.g. selection of underlaying peak flow 

distribution). Third, physical variables such as soil type, land use, basin slope, and rainfall 

variability that also influence in the peak flow response are not captured by the WFDs. These 
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results support the notion that the peak flow quantiles are a statistical characterization and are 

disconnected from the physical processes controlling flood-generating rainfall-runoff events 

(Dawdy et al., 2012; Furey et al., 2016; D. Wright et al., 2014). 

The hypothesis that WFDs would provide a more powerful descriptor for peak flow data 

was based on the theoretical evidence shown in Section 3.4.1 and the analysis of at-site records 

for pairs of gauged sites with similar area in Iowa. For instance, Figure 3-13 shows the peak flow 

quantiles for the six watersheds used as example cases. The watershed of Salt Creek has larger 

peak flows for every quantile than those for Old Man’s Creek. This agree with the pattern 

observed in the results of hydrologic simulations with rainfall duration of less than 12 hours (top 

panel of Figure 3-5). It also agrees with results presented by Ayalew & Krajewski, (2017) 

indicating that because these two watersheds have similar rainfall, soil properties, and land use, 

the variations in the drainage network topology are the dominant factor generating differences in 

peak flow quantiles between the two watersheds. However, this is not true for results obtained 

for the other two pairs of watersheds. For instance, the Thompson River has larger peak flows 

quantiles than the North Raccoon River for all considered probabilities of exceedance, although 

we might expect otherwise. This result suggests that the drainage network is not the dominant 

factor over the regional variability of peak flow quantiles. In fact, there are larger differences in 

soil type and land use for the two watersheds. For instance, the North Raccoon River watershed 

is covered by the soil region number 4 (Loamy Wisconsin Glacial Till), and the Thompson River 

watershed is covered by the soil regions number 15 (Loess Ridges/Glacial Till-Southwest Iowa) 

and number 21 (Loess Ridges/Glacial Till Sideslopes) (Fenton et al., 1971). Another important 

factor to distinguish these two watersheds is drainage control by subsurface drainage systems 

(tiling) and spatial distribution of small dams. Some work suggests that for storms with higher 
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rainfall intensities, surface runoff is dominant and the tiles are not contributing significantly to 

the peak flows (Sloan, 2013). However, the influence of tile systems on the peak flow response 

is not yet completely understood. These subsurface drainage systems are incorporated into the 

soil to create more productive farmland, reducing the excess of water ponded over the croplands 

and in the unsaturated root zone. The tiles change the timing of the water delivery from 

hillslopes to streams. About 30% of Iowa is tiled (Schilling & Helmers, 2008). According to the 

Iowa Department of Natural Resources, the North Raccoon River watershed is part of a region 

completely controlled by tile systems managed by drainage districts. In contrast, there are no 

drainage districts in the Thompson River watershed. In addition, the spatial distribution of small 

dams could contribute to the difference of peak flow quantiles between watersheds. The National 

Inventory of Dams shows that the number of small dams between both watersheds is drastically 

different, with 4 and more than 100 small dams for the North Raccoon River and Thompson 

River, respectively. The difference in peak flow quantiles can be also attributed to the 

climatology in the North Raccoon River and Thompson River watersheds. For example, for 

different return periods, the rainfall frequency atlas for the Midwest shows that the North 

Raccoon River watershed has about 10% lower rainfall intensities than the Thompson River 

watershed does (Huff & Angel, 1992). 

At the larger scale of the watersheds of Cedar River and Des Moines River, we could 

initially expected higher peak flow quantiles in the latter because of its larger drainage area. 

However, the results show that the peak flows quantiles in Cedar River are higher than for Des 

Moines River. I presume that the structure of the drainage network is not controlling the 

difference in peak flows for these two watersheds. Note that overall, the Des Moines River basin 

is elongated, but if we remove the upstream area from the “bottleneck,” the shape of this 
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watershed is closer to circular. For this reason, the first part of the WF of Des Moines River is 

close to that of Cedar River. Regarding the anthropogenic factors, the subsurface drainage 

system is different for these two watersheds. The Des Moines River basin has extensive tile 

systems, while the Cedar River basin does not. I should point out, though, that in the past 10 

years there has been an “explosion” of tiling taking place in Iowa without the establishment of 

new drainage districts. Despite the difference in tile systems between these watersheds, we can 

presume that rainfall variability is the dominant factor causing the large difference in the peak 

flow quantiles between them. At this large scale, we are unlikely to see rainfall events that cover 

the entire watershed. Therefore, rainfall characteristics such as direction, intensity, duration, and 

location in the watershed need to be studied together to understand the peak flow response at 

these large scales. 

3.5. Conclusions 

I showed that the WF is a powerful geomorphologic descriptor that allows researchers to 

distinguish different drainage network structures and their influence on peak flow magnitude. 

This is illustrated using three pairs of watersheds. While these basins have similar drainage area 

A, their specific drainage network structures influence peak flow response in a predictable way. I 

extracted 34 WFDs that provide contrasting measures from one catchment to another. The 

regression analysis between peak flows generated during rainfall-runoff events under simplified 

conditions indicates that A, 𝑞25(𝐷[𝑁]) and 𝐷𝐵
[𝑁𝑆]

 are the descriptors that explain the most 

variance in the regional peak flow variability. I used this result to justify the use of WFDs in 

regional equations to estimate peak flows quantiles. I found, however, that the WFDs did not 

sufficiently explain the regional variability of the peak flow quantiles. I concluded that peak flow 

quantiles are difficult to explain from geomorphologic controls such as the drainage network 
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because these estimates are the result of a statistical characterization and are related to a more 

complex physical flood-generation processes, that cannot be well-explained by drainage network 

morphology/topology alone, whereas peak flow obtained from simulated uniform rainfall-runoff 

events is controlled by the drainage network structure. In overall, the results presented in this 

chapter will help us assess future investigations of the connections between WFDs and peak 

flows from observed rainfall-runoff events; and also, to narrow the number of variables 

influencing regional peak flow quantiles regressions. Further investigation needs to be done to 

understand the role of the sampling errors and epistemic errors in the estimation of peak flow 

quantiles in order to evaluate the benefit of using WFDs in the regional flood frequency 

equations. This last aspect is explored in the following chapter. 
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Table 3-1. Descriptors of the geometric WF for the six watersheds used as example cases. RD: Relative Difference between the pair. 

#: Number of stream links  

 

Name Salt Creek 

Old Man’s 

Creek 
RD 

(%) 

North Raccoon 

River 

Thompson 

River 
RD 

(%) 
Cedar River 

Des Moines 

River RD (%) 

USGS Code 5452000 5455100 5482300 6898000 5464000 5481300 

𝐴 [𝑘𝑚2] 521 521 0 1813 1816 0 13328 14121 -6 

𝑊𝑚𝑎𝑥  [#] 80 34 58 112 56 50 195 217 -11 

𝐷(𝑊𝑚𝑎𝑥) [𝑘𝑚] 29 46 -59 60 75 -25 213 151 29 

𝐷𝐵  [𝑘𝑚] 48 68 -42 97 173 -78 288 482 -67 

𝑀 [#] 1295 1307 -1 4671 4374 6 32484 35349 -9 

𝑑̅ [𝑘𝑚] 25 34 -36 57 92 -63 146 210 -44 

𝑊̅ [#] 22 11 50 32 15 53 65 50 24 

𝑉𝑊 [# ∙ 𝑘𝑚] 2.E+05 3.E+05 -37 2.E+06 3.E+06 -53 3.E+07 5.E+07 -57 

𝑀[0,𝐷(𝑊𝑚𝑎𝑥)] [#] 918 927 -1 2452 1744 29 25944 13106 49 

𝑀[𝐷(𝑊𝑚𝑎𝑥),𝐷𝐵] [#] 377 380 -1 2219 2630 -19 6540 22243 -240 

𝑇𝐷 [#/𝑘𝑚] 27 19 29 48 25 47 113 73 35 

𝑀𝑊𝐷  [# ∙ 𝑘𝑚] 2320 1564 33 6720 4200 38 41535 32767 21 

𝑀𝑊𝐷̅̅ ̅̅ ̅ [# ∙ 𝑘𝑚] 550 374 32 1824 1380 24 9490 10500 -10 



www.manaraa.com

68  

Table 3-2. Descriptors of the WF-at-site for the six watersheds used as example cases. RD: Relative Difference between the pair. 

Name Salt Creek 

Old Man’s 

Creek RD (%) 

North 

Raccoon 

River 

Thompson 

River RD (%) Cedar River 

Des Moines 

River RD (%) 

USGS Code 5452000 5455100 5482300 6898000 5464000 5481300 

𝐷[𝑁]̅̅ ̅̅ ̅̅  0.522 0.501 4 0.583 0.535 8 0.505 0.436 14 

𝑉𝑎𝑟 (𝐷
[𝑁]

) 0.038 0.070 -85 0.047 0.064 -36 0.058 0.059 -1 

𝑆𝑘 (𝐷
[𝑁]

) -0.264 0.034 113 -0.363 0.000 100 0.037 0.565 -1444 

𝐾 (𝐷
[𝑁]

) 2.798 1.815 35 2.236 2.002 10 1.958 2.361 -21 

𝑞25 (𝐷
[𝑁]

) 0.391 0.279 29 0.420 0.345 18 0.301 0.262 13 

𝑞50 (𝐷
[𝑁]

) 0.548 0.494 10 0.618 0.535 13 0.498 0.379 24 

𝑞75 (𝐷
[𝑁]

) 0.640 0.730 -14 0.760 0.735 3 0.710 0.603 15 

𝐷𝑊𝑚𝑎𝑥

[𝑁]
 0.604 0.676 -12 0.619 0.434 30 0.740 0.313 58 

𝑀
[0,𝐷𝑊𝑚𝑎𝑥

[𝑁]
]

[𝑁]
 

0.647 0.682 -6 0.500 0.386 23 0.793 0.365 54 

𝑀
[𝐷𝑊𝑚𝑎𝑥

[𝑁]
,1]

[𝑁]
 

0.353 0.318 10 0.500 0.614 -23 0.207 0.635 -206 
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Table 3-3. Descriptors of the WF-at-region for the six watersheds used as example cases. RD: Relative Difference between the pair. 

Name Salt Creek 

Old Man’s 

Creek RD (%) 

North 

Raccoon 

River 

Thompson 

River RD (%) Cedar River 

Des Moines 

River RD (%) 

USGS Code 5452000 5455100 5482300 6898000 5464000 5481300 

𝑊𝑚𝑎𝑥
[𝑁𝑆]

 3.980 1.692 57% 3.478 1.738 50% 2.850 3.103 -9% 

𝐷(𝑊𝑚𝑎𝑥
[𝑁𝑆]) 0.460 0.729 -59% 0.437 0.546 -25% 0.448 0.307 32% 

𝐴𝑟 1.022 1.031 -1% 1.058 0.989 6% 0.999 1.026 -3% 

𝐷𝐵
[𝑁𝑆]

 0.761 1.078 -42% 0.707 1.260 -78% 0.606 0.979 -61% 

𝑀[𝑁𝑆] 1.022 1.031 -1% 1.058 0.989 6% 0.999 1.026 -3% 

𝑀
[0,𝐷(𝑊𝑚𝑎𝑥

[𝑁𝑆]
)]

[𝑁𝑆]
 

0.724 0.731 -1% 0.555 0.394 29% 0.798 0.381 52% 

𝑀
[𝐷(𝑊𝑚𝑎𝑥

[𝑁𝑆]
),𝐷𝐵

[𝑁𝑆]
]

[𝑁𝑆]
 

0.297 0.300 -1% 0.502 0.595 -18% 0.201 0.646 -221% 

𝑑[𝑁𝑆]̅̅ ̅̅ ̅̅  0.397 0.540 -36% 0.412 0.673 -63% 0.306 0.427 -39% 

𝑊[𝑁𝑆]̅̅ ̅̅ ̅̅ ̅̅  1.070 0.533 50% 1.006 0.469 53% 0.957 0.714 25% 

𝑉𝑊
[𝑁𝑆]

 2.549 3.498 -37% 2.739 4.182 -53% 1.924 2.753 -43% 

𝑀𝑊𝐷
[𝑁𝑆]

 1.830 1.234 33% 1.521 0.950 38% 1.278 0.952 26% 

𝑀𝑊𝐷̅̅ ̅̅ ̅
[𝑁𝑆]

 0.425 0.288 32% 0.415 0.316 24% 0.293 0.305 -4% 
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Figure 3-1. Location of the 147 peak flow gauges (triangles) used to delineate the watersheds in 

the characterization of WFs for the state of Iowa. The yellow triangles are the outlets of the six 

watersheds used as example cases for three different spatial scales. Small scale: 1A) Salt Creek – 

USGS Code 05452000 and 1B) Old Man’s Creek – USGS Code 05455100. Medium scale: 2A) 

North Raccoon River – USGS Code 05482300 and 2B) Thompson River – USGS Code 

06898000. Large scale: 3A) Cedar River – USGS Code 05464000 and 3B) Des Moines River – 

USGS Code 05481300. The drainage network in the figure is for spatial reference only. 
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Figure 3-2. WFs for the six watersheds used as illustration cases. The watersheds have the 

drainage network derived from the NHDPlusV2 product. 
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Figure 3-3. Location of the characteristic points used for the construction of WFDs for the 

watersheds of Salt Creek and Old Man’s Creek: A) geometric WF, B) WF-at-site, and C) WF-at-

region. 
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Figure 3-4. Construction of the expected WF based on the power law regression (left panel) of 𝐷𝐵 and 𝑊̅ with respect to the drainage 

area. The green rectangles in the right panel represent the expected WF obtained from this regression. The blue line is the observed 

WF. 
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Figure 3-5. Hydrographs for the six watersheds with rainfall duration of 30 minutes, 3 hours, 12 hours, and 5 days. Each row 

represents an illustration case, and each column represents a rainfall duration with a constant rainfall intensity of 6.35 mm/hr (0.25 

in/hr). 
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Figure 3-6. Relative difference of maximum discharge obtained from the hydrologic simulations for the three illustration cases. 
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Figure 3-7. Comparison of the maximum discharge obtained from the hydrologic simulations on 

the 147 sites and 4 different rainfall durations. The dashed lines represent the break in scale in 

which the variability of peak flows is not fully explained by the drainage area. 
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Figure 3-8. Comparison of the observed maximum discharge (based on hydrologic simulations) 

and the estimated maximum discharge (based on regression analysis) for rainfall durations of 30 

minutes, 3 hours, and 12 hours. The left panels show the regression results using only the 

drainage area as an explanatory variable. The right panels use the A, 𝑞25(𝑑[𝑁]), and 𝐷𝐵
[𝑁𝑆]

 as 

explanatory variable.  



www.manaraa.com

78  

 

Figure 3-9. RMSE for some combinations of one, two, and three explanatory variables in the 

construction of the regional regression models for the peak flow responses from rainfall duration 

of 12 hours. The shaded red regions represent models with VIF greater than 3. 
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Figure 3-10. Reconstruction of the WD based on the WF descriptors 𝑞25(𝑑[𝑁]), and 𝐷𝐵
[𝑁𝑆]

 for the 

six watersheds used as illustration cases.  
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Figure 3-11. Location of the Iowa River Basin containing the 25 peak flow gauges (blue 

triangles) used in the regional flood frequency regressions. The gray triangles are the other peak 

flow gauges used for regional flood frequency regressions for the entire state of Iowa. 
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Figure 3-12. Power law regression between the drainage area and peak flow quantiles for the 

entire state of Iowa (left panel) and the Iowa River Basin (right panel). 
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Figure 3-13. Estimation of the peak flow quantiles for the six watersheds used as illustration 

cases. The solid lines are the peak flow quantiles estimated with the USGS’ Bulletin 17C 

methodology. The shaded regions represent the 95% confidence intervals. The points are 

empirical probabilities based on the Weibull plotting position formula. 
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[3] Adapted from: Perez, G., Mantilla, R., Krajewski, W., & Quintero, F. (2019). “Examining 

Observed Rainfall, Soil Moisture, and River Network Variabilities on Peak Flow Scaling of 

Rainfall-Runoff Events with Implications on Regionalization of Peak Flow Quantiles”. To be 

submitted to Water Resources Research. 

CHAPTER 4: EXAMINING OBSERVED RAINFALL, SOIL MOISTURE, AND RIVER 

NETWORK VARIABILITIES ON PEAK FLOW SCALING OF RAINFALL-RUNOFF 

EVENTS WITH IMPLICATIONS ON REGIONALIZATION OF PEAK FLOW 

QUANTILES[3] 

4.1. Introduction 

Previous studies of peak flow scaling have focused in two types of peak flows: Peak 

flows resulting from individual rainfall-runoff events (𝑄𝑅), and peak flows related to recurrence 

intervals, also known as peak flow quantiles (𝑄𝑝). Regarding the scaling of 𝑄𝑅, several studies 

have examined how rainfall properties, soil moisture conditions, and river network structure 

explain the variability of 𝛼 and 𝜃. For instance, Furey & Gupta (2007) shows the robust 

influence of depth, duration, and spatial variability of excess rainfall on the scaling parameters, 

based on the analysis of 148 rainfall-runoff events. More recently Ayalew et al. (2014) showed 

the influence of rainfall intensity, rainfall duration, hillslope overland velocity, and channel flow 

velocity into the scaling parameters, by means of hydrologic simulations. On the other hand, 

studying the scaling of 𝑄𝑝 requires estimating the statistical distribution of peak flows and to 

make assumptions on how that distribution scales with respect to the drainage area. If the scaling 

exponent of the power law of 𝑄𝑝 for different quantiles is independent of the recurrence interval 

then the process is called simple-scaling, or multi-scaling otherwise (Gupta, et al., 1994). It is 

important noting that the selection and fitting procedures of probability distributions incorporates 

both, epistemic errors (the true probability distribution function is unknown), and sampling 

errors (due to small sample sizes) to the estimation of 𝑄𝑝, which could obscure the physical 

interpretation of the scaling parameters. Different studies have investigated the parameters of the 

scaling of 𝑄𝑝. Furey et al. (2016) investigates the connections between scaling properties of 𝑄𝑝 
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and 𝑄𝑅, which suggest that the scaling exponents of 𝑄𝑅 are, on average, equivalent to the mean 

scaling exponent of 𝑄𝑅. In general, the scaling analysis of 𝑄𝑝 and 𝑄𝑅 contain remarkable 

differences since 𝑄𝑅 is driven just by the hydrologic processes contained in a specific event, 

whereas 𝑄𝑝 is driven by statistical properties of the peak flow distribution which comprises the 

inclusion of sampling errors and epistemic errors. 

The model 𝑄 = 𝛼𝐴𝜃 has been shown to capture the main scaling structure of the peak 

flows in a homogeneous region; however, this model does not cover the entire complex regional 

variability observed in actual peak flows. Different studies have explored alternative model 

structures to capture more complex natural variabilities that are not implicit in the drainage area. 

The more general example is the US Geological Survey (USGS) regional flood-frequency 

analyses for the estimation of 𝑄𝑝 for different recurrence intervals. Readers are referred to 

Dawdy et al. (2012) for further details about the origins of the regional flood-frequency 

equations in the United States. Usually, these equations incorporate the drainage area A and two 

additional explanatory variables for taking into account possible hydrologic variabilities; 

however, the selection of these explanatory variables are not necessarily supported by hydrologic 

justifications and are just following a statistical criterion in reducing the regression error 

residuals. This lack of hydrologic justifications leads to situations where different explanatory 

variables can be used for different recurrence intervals, making the understanding of the physical 

role of the explanatory variables with respect to the regional peak flow response difficult and 

obscure. One alternative to address this obstacle is to include explanatory variables based on 

hydrologic justifications which will help to facilitate the interpretation of regression parameters. 

For instance, I showed in Chapter 3 that the river network structure, represented by means of 

Width Function Descriptors, can be incorporated into the regional peak flow equations for 
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synthetic uniform rainfall events. Including river network descriptors in regional regression 

analysis line up with the long-standing research in hydrology that shows how the shape of a 

watershed, and the drainage network structure affects the streamflow fluctuations, including the 

magnitude of the peak flow (Horton, 1932; Morisawa, 1958; Rinaldo et al., 1995; Strahler, 

1964). 

I consider that establishing connections between scaling parameters and physics-based 

flood mechanisms is essential for developing flexible regional regression models to predict peak 

flows at ungauged sites. However, the presence of error components related to small sample 

sizes, number of streamflow gauges, and parameter estimation methods make it difficult 

developing these connections and makes the analysis of these regression models impractical. 

Hence, for addressing these concerns, this chapter investigates the following specific objectives. 

1) Describe the scaling performance (e.g. coefficient of determination) of 𝑄𝑅 in terms of 

rainfall, soil moisture, and river network properties of observed rainfall-runoff events. 

2) Evaluate the interplay between sampling error and the selection of explanatory variables 

in the construction of regional regression models for 𝑄𝑅 and 𝑄𝑝. 

The rest of this chapter is organized as follows. I start presenting a theoretical scenario 

based on the geomorphological instantaneous unit hydrograph (GIUH) to illustrate the interplay 

between rainfall properties and river network structure in the definition of model structures to 

represent regional variabilities of peak flows. This is followed by a general definition of regional 

equations for 𝑄𝑅 and 𝑄𝑝with the different error components and scaling assumptions. The 

following section describes the study area and data sources including the data description of 

rainfall-runoff events, peak flow quantiles, radar rainfall fields, satellite soil moisture, and river 

network extraction. After this, I describe the methods to address the two specific objectives of 
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the present chapter. This is followed by a section of results, and a discussion section. Finally, I 

finish with a conclusions section. 

4.2. Scaling and Model assumptions  

4.2.1. Theoretical Illustration of a “True” and “Estimated” Regional Model 

I present a theoretical case to illustrate the connections between peak flow scaling, 

rainfall properties, and river network structure. I clarify that this example is far from including 

all the complexities that exist in observed rainfall-runoff events or peak flow quantiles; however, 

this example provides elements to understand how the true regional model of peak flows is tied 

to variables different to drainage area. I start by defining a region which contains N number of 

streamflow gauges. Each gauge (or sub-watershed) is denoted by the sub-index e. The main goal 

is to find the “true” model that represents the regional variability of all N streamflow gauges 

under an idealized rainfall-runoff event. For this purpose, we use the GIUH under idealized 

conditions in which the surface water flows at a constant speed without infiltration or other 

losses (Rigon, et al., 2016). Now, two independent rainfall events are assumed. Event 1 has a 

long rainfall duration (larger than the concentration time of the larger basin of the region) and 

spatial uniform intensity, and Event 2 has an instantaneous rainfall duration with also spatial 

uniform intensity. Based on the GIUH we obtain that the regional peak flows of the Event 1 are 

directly proportional to drainage area, which agrees with the fact that the entire basin is 

contributing to the peak flow generation. Hence, for the Event 1, the true regional model is  

𝑄𝑅,𝑒
[𝐸𝑣𝑒𝑛𝑡 1] = 𝜆1𝐴𝑒       Equation 4-1 

where 𝜆1 is proportional to the spatial uniform intensity. Now, for the Event 2 (instantaneous 

rainfall event) the formulation of the regional model is different. One of the properties of the 

GIUH is that the hydrograph for instantaneous rainfall events will be proportional to the Width 
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Function (W) of the basin. The W gives the number of links located at a flow distance “x” from 

the outlet, which means that W can be easily extracted from the river network. This fact implies 

that the peak at each site e for the Event 2 is directly proportional to the maximum of W 

(max [𝑊𝑒]) extracted at each site e; therefore, the true regional model for the Event 2 is 

𝑄𝑅,𝑒
[𝐸𝑣𝑒𝑛𝑡 2] = 𝜆2 ∙ max [𝑊𝑒]      Equation 4-2 

where 𝜆2 is proportional to the spatial uniform intensity. Equation 4-1 and Equation 4-2 are the 

true models for the regional estimation of peak flows for Event 1 and Event 2 respectively, under 

the assumptions implied by the GIUH. Now, because of the scaling structure of the drainage 

network, different empirical studies corroborate that the expected value of max [𝑊𝑒] scales with 

the drainage area (e.g. Veitzer & Gupta, 2001), which implies that 

𝐸(max[𝑊𝑒]) = 𝜔𝐴𝑒
𝛿
       Equation 4-3 

with 𝜔 and 𝛿 as scaling parameters. Note that Equation 4-3 uses 𝐸(max[𝑊𝑒]) instead of 

max[𝑊𝑒], which implies that there is variability that cannot be explained by just the drainage 

area. This natural variability is related to the intrinsic configuration of the river network at each 

subwatershed. We denote this remain variability as 𝜓𝑒, now Equation 4-2 can be rewritten in 

terms of Equation 4-3 and 𝜓 as 

𝑄𝑅,𝑒
[𝐸𝑣𝑒𝑛𝑡 2] = 𝜆2(𝜔𝐴𝑒

𝛿 + 𝜓𝑒)     Equation 4-4 

From the previous arguments, I want to highlight the fact that both model structures of 

the regional peak flows from Event 1 and Event 2 include drainage area (see Equation 4-1 and 

Equation 4-4), but just the expression for Event 2 includes river network variabilities (𝜓𝑒). This 

simple result shows that, at least in principle, the river network variability must be considered as 

a candidate to explain the regional variability of peak flow events. I illustrate this concept in 

Figure 4-2 showing an example of the scaling for two events with large durations (gray and black 
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lines) and two events with instantaneous durations (red and yellow lines) using 43 streamflow 

gauges located at the Iowa River Basin (see Figure 4-1). The synthetic intensities associated to 

each event are observed in the left panel of Figure 4-2. These intensities are calculated over the 

concentration time of each subwatershed, for that reason the instantaneous intensities decrease 

with respect to drainage area, since the concentration time increases with the drainage area. The 

regional peak flows are fitted based on the drainage area only. Then, as is expected, the events 

with large durations fits perfectly the Equation 4-1. On the other hand, the events with 

instantaneous duration fails to represent the entire regional peak flow variability that is caused 

for the exclusion of 𝜓𝑒 in Equation 4-4. 

This theoretical exercise is used as an argument to explore different model structures in 

the definition of regional peak flow equations. Three main aspects need to be questioned: 1) How 

can we describe the river network variability (𝜓𝑒) from observed river network structures? 2) 

How dominant is 𝜓𝑒 in the peak flow variability with respect to different sources of variabilities 

(e.g. soil moisture condition, rainfall structure) that are found in real rainfall-runoff scenarios?  

And 3) How can we extent this results to peak flow quantiles? We address these questions in the 

following sections.  

4.2.2. Model Structure of Regional Peak Flow Equations for 𝑸𝑹 and 𝑸𝒑. 

I present regional equations with more general error structures. For rainfall-runoff events, 

we can assume that the true 𝑄𝑅,𝑒 for a site e is estimated by a power law model in function of 

drainage area as: 

𝑄̂𝑅,𝑒 = 𝛼𝐴𝑒
𝜃

        Equation 4-5 

𝑄𝑅,𝑒 = 𝑄̂𝑅,𝑒 + 𝜂𝑒       Equation 4-6 
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where 𝜂𝑒 is the model error which represent the failure of Equation 4-5 to represent the true 𝑄𝑅,𝑒. 

Note that 𝜂𝑒 in Equation 4-6 is presented as an additive term; however, it could be multiplicative. 

For real scenarios of rainfall-runoff events, the 𝜂𝑒 will depend on the different hydrologic 

processes interacting over the peak flow generation mechanisms such as rainfall structure, soil 

moisture conditions, land cover, river network structure, hydraulic geometry of river channels, 

etc. For the theoretical scenario of a GIUH with long rainfall durations, the 𝜂𝑒 is equal to zero, 

and for instantaneous rainfall durations, 𝜂𝑒 is equal to 𝜓𝑒. In practice, the parameters of Equation 

4-5 are estimated based on regression techniques such as Ordinary Least Square (OLS) between 

drainage area and peak flow response for N sites in a region. An inconvenience is that the 

estimation of 𝛼 and 𝜃 is sensitive to the size of N, therefore, in real cases, the estimation of 𝑄̂𝑅,𝑒 

will contain errors attributed to the number of sites used in the regional analysis. Then in a more 

general form, we can assume that 

𝑄𝑅,𝑒 = 𝛼̂𝐴𝑒
𝜃̂ + 𝜂𝑒 + 𝛿       Equation 4-7 

where  𝛿 is the error contribution due to the number of peak flow sites in the estimation of 

regression parameters in Equation 4-5. 𝛼̂ and 𝜃 are the estimations of 𝛼 and 𝜃 by means of OLS. 

I will explore in Section 4.4 the inclusion of river network descriptors in Equation 4-7 in order to 

reduce 𝜂𝑒. 

Regarding 𝑄𝑝,𝑒, we need to consider the statistical procedure to estimate quantiles from a 

fitted probability distribution (𝐹𝑒) for a correct depiction of error components. In real scenarios, 

𝐹𝑒 is derived from a sample of observed peak flows at the site e. Therefore, contrary to 𝑄𝑅,𝑒, the 

estimation of 𝑄𝑝,𝑒 will be subject to sampling errors (𝜀𝑒) caused by the limited sample of peak 

flows used to estimate the probability distribution 𝐹𝑒. Then, if we assume a power law model to 
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estimate 𝑄𝑝,𝑒 in a region, we will be subject to the same errors presented in Equation 4-7, in 

addition to 𝜀𝑒. 

𝑄𝑝,𝑒 = 𝛼̂𝐴𝑒
𝜃̂ + 𝜂𝑒 + 𝜀𝑒 + 𝛿       Equation 4-8 

Equation 4-8 could include other error components related to the incorrect selection of a 

probability distribution function, or error related to the estimation method of distribution 

parameters (e.g. Method of Moments, Method of L-Moments, Maximum Likelihood); however 

for simplicity the empirical probability distribution will be used to exempt these type of errors. 

The depiction of the different error components in the regional estimations of 𝑄𝑅 

(Equation 4-7) and for 𝑄𝑝 (Equation 4-8) are key to understand the predictability limits reached 

with the regional regression equations. For instance, if the variability presented by 𝜀𝑒 and 𝛿 is 

larger than the physical variability explained just by the drainage area, then the regression 

analysis will show that the drainage area has no explanatory power with respect to 𝑄𝑝, in other 

words, the regression parameter 𝜃 will not be statistically significant. For this same reason, the 

inclusion of new explanatory variables (e.g. variables related to river network structure) in the 

regression models could be obscured by the error components of 𝜀𝑒 and 𝛿. This aspect is 

evaluated in Section 4.4 and Section 4.5 with a Monte Carlo simulation experiment. 

4.3. Study Area and Data Sources 

The peak flows, rainfall fields, and soil moisture fields need to be collected over a 

“regional domain” in order to address the objectives of this chapter. The mesoscale Iowa River 

Basin with a drainage area of 32,700 km2 can be considered as an ideal candidate, since it counts 

with a dense USGS monitoring streamflow network. The Iowa River Basin outlet in this study is 

determined by the USGS gauge Iowa River at Oakville (USGS code 05465700). It contains 43 

embedded USGS instantaneous streamflow gauges with drainage area ranging from 6 to 32,700 
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km2. The gauges record 15-minute streamflow data. The length of these streamflow records 

among sites ranges between 4 and 30 years, with average record length of 20 years per site (see 

Figure 4-1). Five gauges have some degree of regulation caused by dams (see Table 4-1). The 43 

gauges were used for identification of rainfall-runoff events, however, just 38 unregulated sites 

were used for the scaling analysis of 𝑄𝑅 and 𝑄𝑝. See Table 4-1 for a general description of the 

streamflow gauges used in this study. The USGS peak flow records at each of the 43 sites were 

used as well. The peak flow values are derived from instantaneous data. 

4.3.1. Selection of Rainfall-Runoff Events (𝑸𝑹) 

The method to identify rainfall-runoff events is subject to the type of properties to be 

explored from these events. The objectives of this study are directed to the scaling analysis of 

peak flows; therefore, the selected rainfall-runoff events must belong to the extreme flow 

population through the different spatial scales within the Iowa River Basin. This condition differs 

from previous studies that analyze the scaling of rainfall-runoff events (Furey & Gupta, 2005, 

2007; Ogden & Dawdy, 2003). For instance, Ayalew et al. (2015) selected 51 rainfall-runoff 

events in the same domain of the Iowa River Basin in the period 2002-2013 ensuring that all the 

streamflow gauges exhibit a streamflow response. However, this streamflow response may not 

correspond to an extreme event. Then, as a countermeasure, I used peak flow thresholds for the 

selection of rainfall-runoff events. The selection is described as follows. I used the 15-minutes 

streamflow data to identify the rainfall-runoff events. The selected rainfall-runoff events must be 

independent amongst them; therefore, the concentration time of the Iowa River Basin is used as 

the minimum time window to separate events. For the concentration time, I use the same 

formulation as Ayalew et al. (2015) assuming  channel flow velocity and hillslope overland flow 

velocity values of 0.5 and 0.02 m/s respectively,  which provides a 15 day concentration time for 
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the Iowa River Basin. The concentration time is also calculated for each one of the 43 

streamflow gauges. In order to guarantee that the observed rainfall-runoff event can be 

considered to be an extreme event, I select just the streamflow gauges that record a streamflow 

higher than a peak flow threshold defined at each site during a time interval of 15 days. Note that 

in order to guarantee a proper regression analysis, I limited the event selection to events that 

contain more than 20 streamflow gauges above the peak flow threshold defined at each site. The 

peak flow threshold is the minimum annual peak flow recorded at the USGS peak flow gauge. 

This minimum annual peak flow is considered part of the peak flow distribution; therefore, it is 

reasonable to assume that any other streamflow higher than this minimum peak flow can be 

considered to be part of the peak flow population. 

4.3.2. Extraction of Peak Flow Quantiles (𝑸𝒑) 

There are two common sampling methods to estimate peak flow quantiles: The first is the 

Annual Maximum Series also known as Annual Peak Flows, and the second is Partial Duration 

Series also known as Block Maxima or Peaks-Over-Threshold. The Annual Maximum Series 

uses the maximum instantaneous peak flow in a year; therefore, the peak flow sample is equal to 

the number of years recorded at the gauge. The shortcoming of this sampling method is the 

exclusion of possible high-flood events observed within a given year. On the other hand, Partial 

Duration Series selects peak flows above of a defined peak flow threshold. The selected peak 

flows need to be independent, for this reason, it is recommended to use a time window equal to 

the concentration time of the basin. In addition, literature recommends using the minimum 

annual peak flow in the observed record as peak flow threshold (Gado & Nguyen, 2016; 

Malamud & Turcotte, 2006; Mohssen, 2009). In this study I estimate the peak flow quantiles 

based on Partial Duration Series because a large sample of peak flows can be related to rainfall 
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and soil moisture observations. Once the peak flow sample is extracted at each gauge, the 

Weibull plotting position formula (Weibull, 1939) is used to estimate the peak flow quantiles 

with recurrence intervals of 50%, 20%, 10%, 4%, 2%, and 1%. 

4.3.3. Rainfall Descriptors 

Radar rainfall data is obtained from Stage-IV radar-rainfall products (Lin & Mitchell, 

2005). The Stage-IV data is a national rainfall dataset distributed by the National Centers for 

Environmental Prediction, which provides multi-sensor rainfall data at 1-hour time resolution 

and a 4 x 4 km spatial resolution over the continental United States. I used this product starting 

on Jan-2002 up to Jan-2019. I characterized the spatial and temporal rainfall properties 

associated with each peak flow and gauge, either by rainfall-runoff events or Partial Duration 

series. The rainfall interval associated to an observed peak flow is defined based on the 

concentration time of each watershed. Then, if a peak flow is observed at a time 𝑡𝑓 for a gauge e 

with concentration time 𝑇𝑒, the analyzed rainfall interval will start from an initial time 𝑡0 equal to 

𝑡𝑓 − 𝑇𝑒 and will end at a time 𝑡𝑓. 

I define the rainfall volume by unit area for each rainfall-runoff event k and basin e as 

𝑉𝑒,𝑘 = ∑ 𝑖(𝑡)
𝑒,𝑘

∆𝑡
𝑡=𝑡𝑓

𝑡=𝑡0
       Equation 4-9 

where 𝑖(𝑡)
𝑒,𝑘

 is the average intensity of the observed rainfall field in the event k in the basin e at 

the time t. ∆𝑡 is the time interval in which the rainfall is measured (e.g. 1 hour for Stage-IV 

products). It is important to characterize the temporal variability of the observed rainfall fields; 

therefore, we can define the mean time of rainfall as 

𝜇𝑒,𝑘 =
1

𝑉𝑒,𝑘
∑ 𝑡𝑖(𝑡)

𝑒,𝑘
∆𝑡

𝑡=𝑡𝑓

𝑡=𝑡0
       Equation 4-10 
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The mean time of rainfall (𝜇𝑒,𝑘) varies from 𝑡0 to 𝑡𝑓, in which 𝑡0 is equal to 𝑡𝑓 − 𝑇𝑒; 

therefore, in order to remove the scale dependence provided by the concentration time 𝑇𝑒 , a 

normalized mean time of rainfall is defined as 

𝜇𝑒,𝑘 =
𝜇𝑒,𝑘−𝑡0

𝑇𝑒
        Equation 4-11 

then 𝜇𝑒,𝑘 ranges from 0 to 1. Now, the rainfall spread around the mean 𝜇𝑒,𝑘 can be calculated as 

𝜎𝑒,𝑘
2 =

1

𝑉𝑒,𝑘
∑ (𝑡 − 𝜇𝑒,𝑘)2𝑖(𝑡)

𝑒,𝑘
∆𝑡

𝑡=𝑡𝑓

𝑡=𝑡0
     Equation 4-12 

and the normalized rainfall spread around the mean 𝜇𝑒,𝑘 can be calculated as 

𝜎𝑒,𝑘
2

=
1

𝑉𝑒,𝑘
∑ (

𝑡−𝑡0

𝑇𝑒
− 𝜇𝑒,𝑘)2𝑖(𝑡)

𝑒,𝑘
∆𝑡

𝑡=𝑡𝑓

𝑡=𝑡0
    Equation 4-13 

I use 𝜇𝑒,𝑘 and 𝜎𝑒,𝑘
2
 to describe the temporal variability of a rainfall event k within a basin 

e. I remark that Ayalew et al., (2015) uses the descriptors 𝜇𝑒,𝑘 and 𝜎𝑒,𝑘
2  (without normalization), 

but only for the outlet of the Iowa River Basin. The use of these descriptors at each basin will 

allow describing with more detail the observed rainfall structure at different watershed scales.  

The rainfall fields used to estimate 𝑖(𝑡)
𝑒,𝑘

 present spatial variability within the basin; 

therefore, I also describe the rainfall structure by means of the intrastorm rainfall variability. I 

use the same approach described by Smith et al. (2004). The intrastorm rainfall variability for an 

instant t, event k, and basin e is defined as 

𝜎𝑒,𝑘,𝑡
∗ = √∑ 𝑃𝑡,ℎ

2𝑀
ℎ=1

𝑀
−

(∑ 𝑃𝑡,ℎ
𝑀
ℎ=1 )

2

𝑀2       Equation 4-14 

where ℎ represents a subregion (e.g. pixels in radar data) within the basin e which is constituted 

by M subregions (total pixels), and 𝑃𝑡,ℎ is the accumulated precipitation in a Δ𝑡 equal to the 

temporal resolution of the rainfall field. Then, for a Δ𝑡 equal to 1 hour, the 𝑃𝑡,ℎ can be interpreted 
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as the intensity of the rainfall field over 1 hour. Then, the intrastorm rainfall variability Index for 

a rainfall event k and basin e is defined as 

𝐼𝜎𝑒,𝑘
∗ =

∑ (𝜎𝑒,𝑘,𝑡
∗ ∑ 𝑃𝑡,ℎ

𝑀
ℎ=1 )

𝑡=𝑡𝑓
𝑡=𝑡0

∑ ∑ 𝑃𝑡,ℎ
𝑀
ℎ=1

𝑡=𝑡𝑓
𝑡=𝑡0

      Equation 4-15 

The descriptors 𝐼𝜎𝑒,𝑘
∗ , 𝜎𝑒,𝑘

2
, and 𝜇𝑒,𝑘 are gauge dependent (function of e) and event 

dependent (function of k). Therefore, in order to define a single descriptor for a specific event, 

the site dependence needs to be removed. For this reason, I calculate the expected value and 

standard deviation of 𝐼𝜎𝑒,𝑘
∗ , 𝜎𝑒,𝑘

2
, and 𝜇𝑒,𝑘 for all the sites (N) at the event scale. Then for 

instance for an event k the expected and variance of the normalized intrastorm rainfall variability 

Index is defined as 

𝐸(𝐼𝜎𝑘
∗ ) =

∑ 𝐼𝜎𝑒,𝑘
∗𝑁

𝑒=1

𝑁
       Equation 4-16 

𝑉𝑎𝑟(𝐼𝜎𝑘
∗ ) =

∑ (𝐼𝜎𝑒,𝑘
∗ −𝐸(𝐼𝜎𝑘

∗ ))
2

𝑁
𝑒=1

𝑁
     Equation 4-17 

I also describe the scaling structure of each rainfall event. I explored the scaling 

dependence of the observed mean intensities (𝑖(𝑡)
𝑒,𝑘

) across basins in a particular event k. I 

estimate 𝑖(𝑡)
𝑒,𝑘

 based on a fitted power law model with Ordinary Least Square and its 

performance is characterized by means of the coefficient of determination (𝑅𝑖
2). 

𝑖(𝑡)
𝑒,𝑘

̂
= 𝛼𝑖𝑘

𝐴𝑒

𝜃𝑖𝑘        Equation 4-18 

where 𝛼𝑖𝑘
 and 𝜃𝑖𝑘

 are the scaling parameters of the rainfall fields for an event k. 

4.3.4. Soil Moisture Descriptors 

Soil moisture data was obtained from Soil Moisture Active Passive (SMAP) satellite 

products (Brown et al., 2013). The SMAP products provide soil moisture content at 9 x 9 km 
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grid size resolution and 12-hour temporal resolution. This data is retrieved from Jan-2015 to Jan-

2019. The SMAP data is used to characterize the spatial variability of the antecedent soil 

moisture conditions prior to the arrival of the observed rainfall-runoff event. The SMAP data 

starts from Jan-2015, therefore just a few events can be described in terms of soil moisture 

conditions. I decided to describe the entire antecedent soil moisture condition for each event k, as 

the mean, standard deviation, and coefficient of variation of the soil moisture fields, calculated 

from the SMAP pixels intersected at the Iowa River Basin.  

4.3.5. River Network Descriptors 

I use the 34 Width Function Descriptors (WFDs) described in Chapter 3 for the 

representation of river network structure. As reminder, I show in Chapter 3 that the WFDs can be 

incorporated into regional peak flow equations with synthetic uniform rainfall scenarios, in 

which among the 34 WFDs, I found that the normalized base of the width function with respect 

to the expected width function base (𝐷𝐵
𝑁𝑆) seems to explain part of the peak flow variability that 

is not explained by drainage area. It is important to note that 𝐷𝐵
𝑁𝑆 can be interpreted as the 

residual of the Hack’s law (Hack, 1957). 

4.4. Methods 

The scaling of 𝑄𝑝 and 𝑄𝑅 was explored with respect to the rainfall, soil moisture, and 

river network descriptors defined previously. I start evaluating the scaling performance of 𝑄𝑅. 

The scaling performance is measured as the coefficient of determination (𝑅𝑄
2) in the log-log 

space of the linear relation between 𝑄𝑅 and A. Basically, I explore if there is any significant 

relation between 𝑅𝑄
2  and the different rainfall and soil moisture descriptors defined for each 

rainfall event. The river network descriptors are used to evaluate different regional model 
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structures including WFDs. For this purpose, I use an exhaustive search method to select the 

final set of explanatory variables based on the Akaike Information Criteria (AIC).  

Regarding 𝑄𝑝, the evaluation is focused in three main parts. The first is to observe how is 

the scaling structure of the rainfall fields and soil moisture fields related to the empirical peak 

flow quantiles. The second is to evaluate if the inclusion of WFDs could improve the regional 

estimation of 𝑄𝑝. And third, with a Monte Carlo simulation approach, I evaluate the influence of 

sampling errors in the selection of the model structures with WFDs as explanatory variables. 

The following Monte Carlo simulation is used to show the control of sampling errors 

over the selection of explanatory variables in the regional equation. I start representing the peak 

flow as a random variable  

𝑄𝑒~𝐿𝑃3(𝑎𝑒 , 𝑏𝑒 , 𝑐𝑒) + 𝜂𝑒      Equation 4-19 

where LP3 represents the Log Pearson type III distribution with parameters 𝑎𝑒, 𝑏𝑒, and 𝑐𝑒 for a 

site e, and, 𝜂 represent the model error. Then, I assume that the peak flow quantiles in a region 

can be characterized by a model using A and an unknown river network descriptor 𝜒, as   

𝑄𝑝,𝑒 = 𝛼𝐴𝑒
𝛽

𝜒𝑒
𝛾

+ 𝜂𝑒       Equation 4-20 

Since Equation 4-20 is assumed to be true, the use of a model criteria procedure based on 

AIC should confirm that a model with A and 𝜒 as explanatory variables outperform a model with 

just A. However, as was explained in the definition of Equation 4-8, the selection of the true 

regional model of peak flow quantiles could be flawed because of error components attributed to 

small sample sizes (𝜀) and the number of sites used in the regression analysis (𝛿). Then, Equation 

4-20 can be rewritten as 

𝑄𝑝,𝑒 = 𝛼̂𝐴𝑒
𝛽̂

𝜒𝑒
𝛾̂

+ 𝜂𝑒 + 𝜀𝑒 + 𝛿     Equation 4-21 
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The issue with Equation 4-21 is that, if 𝜀 + 𝛿 is too large, the model criteria procedure 

based on AIC could fail in the selection of 𝜒 as an explanatory variable. Therefore, in order to 

understand the control of 𝜀 and 𝛿 over the selection of 𝜒, I generate random peak flow samples 

from regional peak flow distributions that satisfy Equation 4-19 and Equation 4-20. The 

definition of the “true” peak flow distribution at each site will be based on peak flow 

observations, and it will be described in the result section. 

For each random sample, the peak flow quantiles are estimated based on a LP3 

distribution. Note that I could assume a different distribution (e.g. GEV, Pearson 3, Weibull) in 

order to incorporate a new epistemic error. I used Monte Carlo simulations to create regional 

scenarios with a different number of peak flow gauges, and different number of observed peak 

flows at each gauge. The number of peak flow gauges varies from 25 to 38, and the number of 

observed peak flows varies from 10 to 100. I performed 1,000 iterations for each scenario, and 

for each of those I evaluated if the AIC prefers the model 𝑄𝑝,𝑒 = 𝛼̂𝐴𝑒
𝛽̂

𝜒𝑒
𝛾̂
 over the model 𝑄𝑝,𝑒 =

𝛼̂𝐴𝑒
𝛽̂

 for different recurrence intervals p. 

4.5. Results 

4.5.1. Rainfall-Runoff Events and Rainfall Descriptors 

I identified 85 rainfall-runoff events over the Iowa River Basin. The peak flow scaling of 

25 of these rainfall-runoff events is observed in Figure 4-3. The scaling exponent (𝜃𝑄) of these 

events ranges from 0.27 to 1.05, and the scaling intercept (𝛼𝑄) ranges from 0.03 to 9.28. The 𝑅𝑄
2  

for these events varies from 0.26 to 0.97, with a mean value of 0.80. I show in Figure 4-4 the 

scaling of rainfall-intensity fields with respect to drainage area for the 85 events. I found that the 

coefficient of determination 𝑅𝑖
2 of the scaling of intensity fields ranges from 0.14 to 0.93 with a 
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mean value of 0.63. The scaling intercept for the intensity fields (𝛼𝑖) ranges from 1.01 to 71.93, 

and the scaling exponent (𝜃𝑖)  ranges from -0.58 to -0.15. The interpretation of 𝑅𝑖
2, 𝛼𝑖, and 𝜃𝑖 is 

key to understand part of the rainfall structure of each rainfall event. For instance, a low 𝑅𝑖
2 

(<0.4) will imply 𝜃𝑖 values closer to zero, which means that the observed rainfall field does not 

exhibit self-similar structure through different spatial scales. However, we can observe 𝜃𝑖 values 

closer to zero but with high 𝑅𝑖
2 (>0.4). For this case and any other case with high 𝑅𝑖

2, the 

magnitude of 𝜃𝑖 represents the change of intensity rate across the spatial scales, and in general, 

the higher intensities are expected in small basins rather than large basins. Therefore, the 

𝜃𝑖  magnitude is expected to be always negative, which agrees with our observations. Also, note 

that we should expect a more uniform rainfall structure when 𝜃𝑖 is approaching to zero.  

I found that the scaling exponents 𝜃𝑖 and 𝜃𝑄 decay with respect to the scaling intercepts 

𝛼𝑖 and 𝛼𝑄 (see Figure 4-5). This is a common feature in scaling structures, which demonstrates 

the interplay between small and large scales that have been reported in different studies (Ayalew 

et al., 2015; Ogden & Dawdy, 2003). Regarding the comparison between scaling performances 

(𝑅𝑖
2 and 𝑅𝑄

2), I found cases where 𝑅𝑖
2 is low, but 𝑅𝑄

2  still show good performance. For these 

cases, I presume that the scaling in peak flows is preserved because the aggregation processes 

across the river network are more dominant that the spatial variability presented by the intensity 

fields. Reversely, I found five events that have 𝑅𝑄
2  lower than 0.5 and are related to 𝑅𝑖

2 higher 

than 0.5. This result could be caused by two reasons. First, due to a complex rainfall structure 

that is not captured by the scaling description of the intensity fields. And second, due to spatial 

variabilities induced by antecedent soil moisture conditions. I explore these two aspects with the 

analysis of soil moisture descriptors and different rainfall descriptors at the end of this section. 
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For a more detailed analysis, I divided the 85 events into three groups providing a similar 

number of rainfall events in function of ranges of 𝑅𝑄
2  for a fair comparison. The first group are 

events with 𝑅𝑄
2 ≤ 0.75, the second group with 0.75 < 𝑅𝑄

2 < 0.85, and a third group with 𝑅𝑄
2 ≥

0.85. The first, second and third group have 25, 26, and 34 rainfall-runoff events respectively. 

Figure 4-6 shows the values of 𝜃𝑖 and 𝛼𝑖 for the three groups. This result shows a positive linear 

trend between 𝜃𝑖 and 𝑅𝑄
2 . Note also that the scaling intercept 𝛼𝑖 tends to decay with the 

increasing of 𝑅𝑄
2 , which suggest that the peak flow scaling start to debilitate for events with 

higher intensities in small scales (related to higher 𝛼𝑖) and higher changes in intensity rates 

across the spatial scales  (related to lower 𝜃𝑖). The positive linear relation between 𝜃𝑖 and 𝑅𝑄
2  

implies that the scaling exponent of the rainfall fields controls the scaling performance of 

observed peak flows events. The implication of this result is examined in detail in the Discussion 

section.  

I also inspected the behavior of rainfall descriptors 𝐼𝜎𝑒,𝑘
∗ , 𝜎𝑒,𝑘

2
, and 𝜇𝑒,𝑘 in relation to 𝑅𝑄

2  

in Figure 4-7. I found that these descriptors explain part of 𝑅𝑄
2  variability between events. For 

instance, I found that the 𝑅𝑄
2  increases with decreasing the expected value of 𝐼𝜎𝑘

∗ ,  which means 

that the scaling of peak flows improves with more spatial uniform rainfall events. The larger 𝐼𝜎𝑘
∗  , 

the higher the spatial variability of the observed rainfall event. This result is confirmed with the 

standard deviation of 𝐼𝜎𝑘
∗ , which shows higher variabilities for events with lower 𝑅𝑄

2 . For the 

normalized mean time of rainfall 𝜇𝑘, I found that almost all the rainfall events are concentrated 

in the range 0.4 to 0.5 with a spread (𝜎𝑘
2

) ranging from 0.02 to 0.04, which implies that most of 

the rainfall events are occurring at the middle of the window defined by 𝑡0 and 𝑡𝑓.  
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4.5.2. Rainfall-Runoff Events and Soil Moisture Descriptors 

Because of the short record length of SMAP product starting from 2015, I only could 

identify antecedent soil moisture conditions for 24 rainfall-runoff events out of the 85 initial 

events. I separated the 24 events into two groups based on 𝑅𝑄
2  and a similar number of events. 

First group has 𝑅𝑄
2 < 0.85 and it has 10 events, and the second group has 𝑅𝑄

2 ≥ 0.85 with 14 

events. The most notable result is the coefficient of variation of the soil moisture fields between 

groups, which suggest that the higher 𝑅𝑄
2  are related with more homogeneous soil moisture fields 

(see Figure 4-8). At the same time, this result implies that heterogeneity in soil moisture fields 

will generate more variabilities in the peak flow scaling. These results provide some insight of 

the importance in antecedent soil moisture, although, further analysis with large sample sizes or 

hydrologic simulations need to be tested in order to be confident of these findings. 

4.5.3. Rainfall-Runoff Events and River Network Descriptors 

The investigation of other model structures that include WFDs shows that 15 events are 

improved by using a model structure that accounts for drainage area and the width function 

descriptor 𝐷𝐵
𝑁𝑆. For the other 70 events, a model with only drainage area seems to be the best 

model based on the AIC (see Figure 4-9). Based on the theoretical argument presented in Figure 

4-2, we were expecting to find model improvement with the inclusion of river network 

descriptors. I argue that this selection is partially controlled by the error contribution of the 

number of gauges (𝛿), which obscures the contribution of new explanatory variables such as 

𝐷𝐵
𝑁𝑆. This feature is well represented in the boxplot of number of sites in Figure 4-9, which 

shows that the events with improved equations have in average more sites that the events that are 

not improving. The interplay between model structure and sampling error in the selection of 
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explanatory variables such as 𝐷𝐵
𝑁𝑆 is explored in further detail for peak flow quantiles in the 

following section. 

4.5.4. Connecting Peak Flow Quantiles to Rainfall and River Network Descriptors 

I examined the rainfall properties of the individual rainfall events that are triggering the 

peak flow quantiles at different sites. Because of the statistical nature of the selection of peak 

flow quantiles at each site, there is no need for an agreement for a same rainfall event to generate 

a specific flood frequency across the entire domain. This result is observed in Figure 4-10 in 

which the peak flow quantiles at each site are caused by different rainfall events. I observed that 

the scaling exponents changes from 0.62 to 0.54 for Q50% and Q1% respectively (see Table 4-2), 

which agrees with the multi-scaling property found in previous studies (Gupta et al., 1994). 

Another interesting result is observed with the scaling of the rainfall-intensity fields associated 

with each of the events generating the peak flow quantiles. This result agrees with the well-

known fact that the frequency of intensity fields decays with respect to the scale length (e.g. 

drainage area). In order to compare the results with the rainfall-runoff events, I plotted the 

intensity and peak flow scaling of the 85 rainfall-runoff events, and I superimposed the 1%, 4%, 

and 10% peak flow quantiles with their respective intensity scaling in Figure 4-11. I observed 

that the scaling of intensity fields of peak flow quantiles for lower frequencies are in the range in 

where the scaling performance of 𝑄𝑅 decreases (see Figure 4-6). Because of short record periods 

of soil moisture, I could not reconstruct the soil moisture fields for these regional peak flow 

quantiles. 

A notable difference between the regression analysis of 𝑄𝑅 and 𝑄𝑝 is the number of 

gauges. For 𝑄𝑝 we have estimations for all the 38 sites, expect for the quantiles of 2% and 1% 

that have 37 and 35 sites respectively; however, for 𝑄𝑅 the number of gauges change from event 
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to event ranging from 20 to 38 sites. I found that all the regional regression models for 𝑄𝑝 

improve with the inclusion of the width function descriptor 𝐷𝐵
𝑁𝑆 with an average of 15% in 

reduction of the Root Mean Square Error (see Table 4-3). I argue that the disagreement of using 

𝐷𝐵
𝑁𝑆 in the estimation of 𝑄𝑝 and not in 𝑄𝑅, is because of the difference of number of sites used in 

both analyses. This is demonstrated more clearly next with the results of the Monte Carlo 

simulations.  

For the Monte Carlo simulation, I use the empirical evidence showing that peak flow 

quantiles can be represented by a regional model using A and 𝐷𝐵
𝑁𝑆 as explanatory variables. 

Then, for the use of Equation 4-19 in the Monte Carlo simulation, I assume that a LP3 

distribution fitted from the first three moments of the empirical peak flow distribution, is the 

“true” distribution, and for Equation 4-20 I assume that 𝜒 is represented by 𝐷𝐵
𝑁𝑆. Then, following 

the Monte Carlo simulation procedure explained in the Method section, we can explore the 

interplay between sample size, number of gauges, and selection of 𝐷𝐵
𝑁𝑆 as an explanatory 

variable.  

In Figure 4-12, we observe the results of the Monte Carlo simulation. It is notable the 

large influence of the number of peak flows and number of sites for the selection of the model 

structure. For instance, if we reduce the number of sites from 38 to 25, we expect to select just 

40% of the cases the true model (a model with A and 𝐷𝐵
𝑁𝑆) over a model just with drainage area 

for any given recurrence interval. Regarding sample sizes, with more peak flow samples it is 

more likely to select the right model, which agrees with the reduction of sampling error. Also, 

note that the lower frequencies (e.g. 1%, and 2%) are more sensitive to sampling errors, therefore 

as we observed in Figure 4-12, the percentage of simulations showing improvement, decreases 

with the decrease of the probability of exceedance. 
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4.6. Discussion 

The evaluation of 𝑅𝑄
2  was based on a model using just the drainage area. Therefore, the 

understanding of the controls behind 𝑅𝑄
2  will provide guidance for a better development of 

empirical regional flood frequency models. I found that the rainfall structure and soil moisture 

variability explain part of the peak flow scaling performance. More specifically, I found that the 

scaling exponent of rainfall-intensity fields explain part of the scaling performance of peak 

flows. This result agrees with the results showed in the theoretical scenario in which the scaling 

structure of the intensity fields is controlling the amount of explanatory power of the drainage 

area and geomorphologic variabilities such as river network structure. This result contains a 

strong indication for the analysis of peak flow quantiles. It suggests that for 𝜃𝑖 closer to zero the 

drainage area is enough to explain the regional variability of peak flows, and for 𝜃𝑖 away from 

zero (e.g. -0.5) the river network plays a more relevant role in the regional variability. I found for 

the scaling of intensities fields associated to peak flow quantiles that 𝜃𝑖 is around -0.4, which 

suggest that, although there is not spatial connectivity between the quantiles, there is a scaling 

organization in intensity fields that could create a physical control that determines the role of the 

river network structure as a source to explain the regional peak flow variability. 

The theoretical regional variability of peak flows presented in Figure 4-2 illustrates the 

interplay between rainfall properties and river network structure with respect to the regional peak 

flow variabilities. In this theoretical scenario, the regional peak flow variability is caused by just 

the interplay between rainfall duration and river network structure. Therefore, a power law 

model with just A is insufficient to represent the regional peak flows. This theoretical scenario 

provides physical arguments to explore if river network descriptors could improve estimates of 

real peak flow variabilities, either in rainfall-runoff events or peak flow quantiles. I demonstrate 
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in Chapter 3 that the WFDs can improve regional equations for simulated uniform rainfall 

events. For rainfall-runoff events, I found that just 15 out of 85 events improve with WFDs. And 

although this finding could be attributed to the regional variabilities of other processes such as 

soil moisture fields, I argue that this is partially caused by the number of sites used in the 

regression analysis, since the improved events exhibit more sites with respect to those who do 

not improve. The argument that the number of sites controls the inclusion of WFDs is supported 

in the analysis of the regional peak flow quantiles. In the peak flow quantiles, I observed that all 

the explored frequencies were improved by the 𝐷𝐵
𝑁𝑆, in which a total of 38 sites are used for the 

regressions, except for the frequencies of 2% and 1% which have 37 and 35 sites respectively 

(see Table 4-2). In fact, the Monte Carlo simulation demonstrates that the selection of 𝐷𝐵
𝑁𝑆 as an 

explanatory variable is very sensitive to the number of sites used in the regression analysis. I 

found in Chapter 3 for the Iowa River Basin that the WFDs do not improve the regional models 

of peak flow quantiles in comparison to a regional model with only drainage area. The results of 

this current chapter explain the findings of Chapter 3, since in Chapter 3 I use only 25 sites in the 

Iowa River Basin for the estimation of the regional models. The main reason that I use only 25 

sites is because I estimate the peak flow quantiles using annual peak flows with sites with more 

than 30 years of records.  

4.7. Conclusions 

For the proper use of a scaling theory of floods in flood regionalization, the scaling 

theory needs to be concerted with the different well-known problems in statistical hydrology 

related to the development of regional regression equations. The findings of this study contribute 

to the following specific points 
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1) The performance of the peak flow scaling of 85 rainfall-runoff events with respect to 

drainage is linked to scaling properties of rainfall-intensity fields. This finding helps us to 

presume that part of the peak flow variability that is not explained by the power law with 

drainage area, is a consequence of variabilities in river network structure. 

2) The spatial variability of soil moisture fields as antecedent conditions of 24 rainfall-

runoff events is linked to the performance of the scaling structure of rainfall-runoff 

events. I found that more homogeneous soil moisture fields are related to rainfall-runoff 

events with better scaling.  

3) Although in principle the scaling of peak flow quantiles does not come from the same 

rainfall-runoff events, I found a well-organized structure of the rainfall-intensity fields 

associated to the peak flow quantiles, suggesting that the river network structure could be 

used as an explanatory variable for the definition of regional regression equations. 

4) I found that the integration of river network structure by means of Width Function 

Descriptors in regional regression equations improves the peak flow quantile estimations 

with an average of 15% in reduction of the Root Mean Square Error. I demonstrated that 

selection of Width Function Descriptors in regional equations are subject to the sampling 

errors incorporated by short sampling records of peak flows and number of streamflow 

gauges.  

An exhaustive hydrologic simulation analysis needs to be conducted in order to test our 

findings. For instance, different rainfall fields with different  𝜃𝑖 under different soil moisture 

conditions can be evaluated in order to observe the change in 𝑅𝑄
2 , and subsequently, investigate if 

the Width Function Descriptors can improve this variability. With respect to peak flow quantiles, 

a rainfall generator method can be used to create different rainfall samples in order to investigate 
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if the regional variability of peak flows quantiles can be explained by width function descriptors. 

In the following chapter, I used exhaustive hydrologic simulations in order to explore with more 

detail the contribution of sampling errors and model structures in the estimation of peak flow 

quantiles 

 

  



www.manaraa.com

108  

Table 4-1. Description of the streamflow gauges. 𝑁𝐴𝑛𝑛𝑢𝑎𝑙 𝑝𝑒𝑎𝑘𝑠 is the number of annual peak 

flows recorded by USGS peak flow gauge. 𝑁15−𝑚𝑖𝑛 is the number of peak flows extracted from 

the Partial Duration series using the USGS 15-minutes streamflow data. 

ID USGS Code Area [km2] 𝑄𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 [m3/s] 𝑁𝐴𝑛𝑛𝑢𝑎𝑙 𝑝𝑒𝑎𝑘𝑠 𝑁15−𝑚𝑖𝑛  Regulated 

1 5465700 32712 784 9 44 Yes 

2 5465500 32375 191 115 194 Yes 

3 5465000 20168 155 78 170 No 

4 5464780 18324 668 5 14 No 

5 5464500 16861 93 116 220 No 

6 5464420 16426 276 8 70 No 

7 5464315 15644 309 8 59 No 

8 5464000 13328 88 79 191 No 

9 5463050 12261 575 5 15 No 

10 5455700 11119 129 61 145 Yes 

11 5454500 8472 45 117 226 Yes 

12 5453520 8068 99 25 141 Yes 

13 5453100 7236 94 62 115 No 

14 5451770 4874 77 6 48 No 

15 5462000 4522 35 65 166 No 

16 5458500 4302 31 97 179 No 

17 5458300 4007 72 17 88 No 

18 5451500 3968 37 101 144 No 

19 5460400 3240 90 6 32 No 

20 5457700 2730 17 63 185 No 

21 5458900 2191 11 73 190 No 

22 5457505 2173 65 6 39 No 

23 5455500 1487 27 79 109 No 

24 5459500 1362 10 85 160 No 

25 5449500 1111 8 76 146 No 

26 5457000 1033 15 117 113 No 

27 5463000 899 5 72 186 No 

28 5458000 793 10 64 127 No 

29 5463500 785 6 60 169 No 

30 5464220 774 18 19 77 No 

31 5451210 580 22 22 66 No 

32 5452000 521 14 73 83 No 

33 5455100 521 11 67 110 No 

34 5453000 490 15 72 96 No 

35 5451700 306 4 69 132 No 

36 5454300 254 8 65 97 No 

37 5452200 184 4 68 104 No 

38 5454220 151 10 23 72 No 

39 5451900 145 3 68 118 No 

40 5454000 66 5 80 74 No 

41 5451080 31 4 12 11 No 

42 5454090 23 7 11 39 No 

43 5464942 7 1 18 47 No 
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Table 4-2. Results for the regression analysis for the model 𝑄𝑝 = 𝛼𝐴𝜃 

p [%] 
𝛼 

[m3/s] p-value 𝜃 p-value AICc RMSE [m3/s] adj-R2 𝑁𝑠𝑖𝑡𝑒𝑠  

50% 0.71 2.76E-01 0.62 2.74E-16 56.89 137 0.85 38 

20% 2.20 8.96E-03 0.58 6.84E-17 52.47 245 0.86 38 

10% 4.07 5.22E-06 0.55 2.36E-17 46.15 291 0.86 38 

4% 5.52 4.38E-09 0.57 4.01E-20 33.52 283 0.90 38 

2% 9.04 1.89E-12 0.54 2.95E-20 23.31 277 0.91 37 

1% 10.61 1.42E-11 0.54 9.37E-18 28.58 263 0.89 35 
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Table 4-3. Results for the regression analysis for the model 𝑄𝑝 = 𝛼𝐴𝜃𝐷𝐵
𝑁𝑆𝛽

 

p [%] 
𝛼 

[m3/s] p-value 𝜃 p-value 𝛽 p-value AICc 
RMSE 
[m3/s] adj-R2 𝑁𝑠𝑖𝑡𝑒𝑠  

50% 0.72 2.73E-01 0.62 1.48E-16 -0.89 4.22E-02 54.71 120 0.87 38 

20% 2.24 5.05E-03 0.57 2.99E-17 -0.89 2.79E-02 49.51 221 0.87 38 

10% 4.14 2.07E-06 0.54 1.29E-17 -0.78 3.79E-02 43.76 266 0.88 38 

4% 5.62 5.14E-10 0.56 6.31E-21 -0.83 7.15E-03 27.92 216 0.92 38 

2% 9.34 1.69E-13 0.54 6.07E-21 -0.73 8.12E-03 17.94 211 0.93 37 

1% 10.60 1.05E-11 0.54 8.86E-18 -0.53 1.05E-01 28.05 228 0.90 35 
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Figure 4-1. Location of the streamflow gauges within the Iowa River Basin (left panel) and 

length of the 15-minutes streamflow records (right panel). 
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Figure 4-2. Translation of scaling properties from rainfall fields to peak flows in the Iowa River Basin in theoretical scenarios with 

spatial uniform rainfall fields with large durations (gray and black lines) and instantaneous durations (red and yellow lines). 



www.manaraa.com

113  

 

 

Figure 4-3. Example of 25 peak flow scaling of observed rainfall-runoff events over the Iowa 

River Basin. 
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Figure 4-4. Scaling of the observed rainfall intensity fields (left panel) and associated peak flows (right panel). The gray lines 

represent all the 85 rainfall-runoff events. The three lines with shades of blue represents three different events. 
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Figure 4-5. Scatter plots showing the relation of scaling parameters between rainfall intensity 

fields and peak flows of rainfall-runoff events. 
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Figure 4-6. Boxplots of the scaling parameters of rainfall intensity fields and number of sites with respect to the performance of the 

peak flow scaling. Each of groups 𝑅𝑄
2 ≤ 0.75, 0.75 < 𝑅𝑄

2 < 0.85, and 𝑅𝑄
2 > 0.85  contain 25, 26, and 34 rainfall-runoff events 

respectively. 
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Figure 4-7. Boxplots of rainfall properties with respect to the performance of the peak flow 

scaling. Each of groups 𝑅𝑄
2 ≤ 0.75, 0.75 < 𝑅𝑄

2 < 0.85, and 𝑅𝑄
2 > 0.85  contain 25, 26, and 34 

rainfall-runoff events respectively. 
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Figure 4-8. Boxplots of soil moisture properties with respect to the performance of the peak flow scaling. Each of groups 𝑅𝑄
2 < 0.85, 

and 𝑅𝑄
2 > 0.85  contain 10, and 14 rainfall-runoff events respectively. 
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Figure 4-9. Boxplots of the scaling parameters of rainfall intensity fields and number of sites with respect to the best model selected 

via AIC. The group 𝐴𝐼𝐶𝑄 > 𝐴𝐼𝐶𝑄,𝐷𝐵
𝑁𝑆, contains 15 rainfall-runoff events and 𝐴𝐼𝐶𝑄 > 𝐴𝐼𝐶𝑄,𝐷𝐵

𝑁𝑆 contains 70 rainfall-runoff events. The 

sub-index Q represent the model 𝑄𝑅 = 𝛼𝐴𝜃, and the sub-index 𝑄, 𝐷𝐵
𝑁𝑆 represent the model 𝑄𝑅 = 𝛼𝐴𝜃𝐷𝐵

𝑁𝑆𝛽
. 
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Figure 4-10. Scaling of empirical peak flow quantiles (right panel) and their respective rainfall 

intensities (left panels) for the probability of exceedance of 10%, 4%, and 1%. The colors show 

when the rainfall-runoff event occurred. 
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Figure 4-11. Scaling of empirical peak flow quantiles (right panel) and their respective rainfall intensities (left panels) for the 

probability of exceedance of 10% (yellow line), 4% (orange line), and 1% (red line). As reference the gray lines are the scaling of the 

observed 85 rainfall-runoff events. 
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Figure 4-12. Results of the Monte Carlo simulation for the evaluation of the sensibility of model 

selection as function of exceedance probability, sample size, and number of streamflow gauges 

(𝑁𝑠𝑖𝑡𝑒𝑠) 
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[4] Adapted from: Perez, G., Mantilla, R., & Krajewski, W. (2019). “Using Physically-Based 

Synthetic Peak Flows to Assess Local and Regional Flood Frequency Analysis Methods”. 

Submitted to Water Resources Research. 

CHAPTER 5: USING PHYSICALLY-BASED SYNTHETIC PEAK FLOWS TO ASSESS 

LOCAL AND REGIONAL FLOOD FREQUENCY ANALYSIS METHODS [4] 

5.1. Introduction 

In situations in which flood peak observations are available, Peak flow quantile (PFQ) 

estimation is often based on one of two frameworks, both of which consist of fitting statistical 

distributions to these observations: At-Site Flood Frequency Analysis (ASFFA) and Regional 

Flood Frequency Analysis (RFFA). ASFFA uses observations at the (gauged) site of interest, 

while RFFA uses observations from a “homogeneous region” to estimate PFQ at either gauged 

or ungauged sites. Some of the most popular RFFA methods are the Index Flood Method (IFM) 

(e.g., Hailegeorgis & Alfredsen 2016; Hosking & Wallis 1997; Odry & Arnaud 2017; Saf 2009), 

the Quantile Regression Technique (QRT) (Ahn & Palmer 2016; Gupta & Dawdy 1995; Haddad 

et al. 2011), and the Parameter Regression Technique (PRT) (Ahn & Palmer 2016; Haddad et al. 

2012; Malekinezhad et al. 2011). These methods are discussed in more detail in Section 5.3. 

Relatively small samples of flood peak records (less than 100 years in most locations) can 

translate to large uncertainties because of sampling size limitations (henceforth denoted by 𝜀) in 

estimates of rare quantiles such as the 100- or 500-year flood, since these are estimated from the 

sample rather than the population. The main objective of RFFA is to reduce these sampling 

errors by pooling regional peak flow information from other sites. Epistemic error (henceforth 

denoted by 𝛿), on the other hand, represents the failure of the chosen statistical model (i.e., 

distribution) to represent the true quantity to be estimated. The quantification of the epistemic 

error for quantile estimates is challenging since the “true” underlying distribution is unknown.  
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Synthetic peak flows can help elucidate sampling and epistemic errors associated with 

different ASFFA or RFFA methods because researchers can identify the underlying peak flow 

distribution beforehand and create large samples. The principle challenge of synthetic 

approaches is the need for a realistic representation of peak flow distribution parameters. A 

common example is to evaluate errors for a specific ASFFA distribution with specified 

parameters. Synthetic evaluation of RFFA techniques is more complex because it requires 

depiction of the spatial variability of peak flow distributions throughout the region. 

Most synthetic studies that have examined errors in RFFA use explanatory variables such 

as drainage area to vary the distribution parameters within the region. For instance, Stedinger & 

Tasker (1985) used a Monte Carlo experiment to evaluate PFQ estimates produced by different 

regression analysis methods. They generated synthetic peak flows based on the first three 

moments of the peak flow series, they represent the mean, and standard deviation as a linear 

function of the logarithms of the drainage area, and a zero skewness. Follow-up work (Stedinger 

& Tasker 1986) used a Pearson Type III (P3) distribution for site i with mean 𝜇𝑖, standard 

deviation 𝜎𝑖, and nonzero skewness 𝛾𝑖~𝑁[0, 𝜎𝛾
2], with 𝜎𝛾

2 = 0.5, corresponding to the variance 

of nationwide (U.S.) skewness. More recently, Micevski & Kuczera (2009) evaluated epistemic 

and sampling errors of QRT with synthetic samples for 80 sites using a true regional model 

𝜃𝑖~𝑁(2 + 0.3𝑧𝑖 , 𝜎𝑅
2) in which 𝜃𝑖 and 𝑧𝑖 are the peak flow quantile and a catchment descriptor 

for each site i respectively, and σR
2  is the true epistemic error. Sveinsson et al. (2001) performed 

a synthetic evaluation of IFM using the Generalized Extreme Value (GEV) and Log Pearson 

Type III (LP3) distributions; they assumed that the skewness in the region was constant in order 

to preserve the homogeneity assumption implicit in IFM (see Section 5.3.2.2). Similarly, Nguyen 

et al. (2014) evaluated IFM using Monte Carlo simulations for the GEV distribution, including 
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cases without regional variability (constant skewness) and a degree of spatial variability. Halbert 

et al. (2016) also used a Monte Carlo simulation to evaluate the effects of sampling variability 

and the consequences of two forms of regional heterogeneity in IFM using synthetic data based 

on the GEV. The first form was in the Index Flood Factor (similar to Nguyen et al. (2014)), 

while the second was heterogeneity in the distribution parameters. 

The scientific community is still debating how best to select a local or regional method to 

estimate PFQs. For instance, Odry & Arnaud (2017) evaluated the relative performance of 

ASFFA, PRT, IFM, and a process-based simulation approach using peak flow observations in 

France. Using the Gumbel distribution for ASFFA and the GEV distribution for PRT and IFM, 

they found that for the 10-year flood peak, ASFFA and PRT perform slightly better than IFM, 

while for longer return periods (e.g., 100-year), PRT performance decreased. Hailegeorgis & 

Alfredsen (2016) used ASFFA with the generalized logistic distribution and IFM; they found 

that the resulting uncertainty estimates failed to “cover” the at-site  (i.e., ASFFA) estimates for 

some catchments in Norway. Haddad & Rahman (2012) compared PFQ estimates in eastern 

Australia using QRT and PRT with the LP3 distribution, concluding that the two show similar 

performance. Ahn & Palmer (2016) compared QRT and PRT for the Northeastern United States 

using the GEV, showing that QRT had slightly better performance than PRT. Malekinezhad et 

al. (2011) performed a comparison between IFM and QRT based on L-moments for peak flows 

in Iran. They concluded that the IFM gives more reliable estimates for a range of recurrence 

intervals. Halbert et al. (2016) compared PFQ estimates between ASFFA and IFM for peak flow 

observations in France using the GEV distribution; their study showed similar performance from 

both methods. This study is the only one we found that used synthetic cases with the inclusion of 
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heterogeneities in the parameters of the local distribution to evaluate the performance of the 

IFM. 

This chapter seeks to address two issues that have not received enough attention in the 

aforementioned literature. First, while the existing literature examines sampling error and 

epistemic errors under idealized RFFA scenarios, it is unclear whether the spatial depictions of 

distribution parameters are realistic because peak flow distributions are controlled by regional 

rainfall and geomorphologic characteristics (Ayalew & Krajewski 2017; Black 1972; Mandapaka 

et al. 2009) that are not explicitly represented in prior studies. Second, a synthetic study 

comparing error components of PFQs induced by local and regional approaches as a function of 

sample size and, in the case of regional approaches, the number of pooled sites, has not yet been 

conducted. I did not find any synthetic studies using rainfall-runoff models for the evaluation of 

regional methods to estimate PFQs. Thus, the present study presents a unique contribution in the 

use of hydrologic simulations for the evaluation of RFFA methods. 

The structure of this chapter is as follows: Section 5.2 describes the generation of 

synthetic peak flows in a watershed based on Stochastic Storm Transposition (SST) and 

hydrologic modeling. Section 5.3 describes the local and regional procedures used to estimate 

the PFQs, as well as the epistemic error estimation and Monte Carlo simulation procedures to 

evaluate sampling errors. Section 5.4 presents results and discussion, including a subsection that 

provides insights into the controls of the regional peak flow variability through the regional 

skewness. Finally, I finish with a section of conclusions with final remarks. 
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5.2. Physically-Based Synthetic Peak Flows 

Physically-realistic synthetic rainfall and resulting flood peaks for the Turkey River 

watershed (4,385 km2), located in northeast Iowa in the midwestern United States (Figure 5-1) 

are simulated. I generated synthetic peak flows through a combined framework of stochastic 

storm transposition (SST), based on RainyDay (Wright et al. 2017), and the distributed 

hydrologic model Hillslope Link Model (HLM) (Krajewski et al. 2017; Mantilla & Gupta 2005; 

Quintero et al. 2016). We refer to this combined framework as RainyDay-HLM. 

5.2.1. Observation-Driven Stochastic Storm Event Generation 

RainyDay is an open-source software developed to couple SST with rainfall remote 

sensing data for observation-driven rainfall and flood frequency analysis Wright et al. (2017). 

The objective of SST is to increase the extreme rainfall records by means of temporal resampling 

and spatial transposition of storms from the surrounding region (e.g., Alexander (1963); Fontaine 

& Potter (1989); Foufoula‐Georgiou (1989); Franchini et al. (1996)). RainyDay’s SST 

methodology has five main components: (1) identification of a geographic transposition domain 

A’ that encompasses the watershed of interest A; (2) creation of a “storm catalog” of the largest 

m temporal non-overlapping storms in A’ from an n-year rainfall remote sensing dataset, in terms 

of rainfall accumulation of duration t and with the same size, shape, and orientation of watershed 

A; (3) random generation of annual storm frequency k (Poisson-distributed); (4) random 

selection of k storms from the storm catalog; and (5) random transposition of the rainfall fields 

associated with each storm in east-west and north-south distance. In this step, the largest (in 

terms of rainfall intensity) rainfall event over A is retained and can be understood as a 

“synthetic” annual rainfall maxima. Steps 3 and 4 are repeated with a user-specified Tmax, the 

number of annual rainfall maxima to be synthesized for A. The selection of A’ requires an 
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understanding of spatio-temporal features of the regional rainfall patterns (Pavlopoulos and 

Krajewski, 2014; Thorndahl et al., 2014). As mentioned in Wright et al. (2017) the method 

would be limited to small and flat regions far from topographic features. See Wright et al. (2017) 

for a more detailed description of limitations and advantages of RainyDay. 

For the Turkey River Basin case study, a domain A’ covering most of Iowa, southwestern 

Wisconsin, and southeastern Minnesota was used (see Figure 5-1 – Panel B). The April-

November Stage IV rainfall data, which are based on weather radar and rain gauge observations 

(Lin & Mitchell 2005), for the years 2002-2016 is used to identify 300 storms in A’ with the 

same size, shape, and orientation as A. The number of storms per year is Poisson-distributed with 

rate parameter of 20 storms per year (300 storms divided by 15 years). A Tmax equal 10,000 is 

selected, meaning that we used 10,000 rainfall events and their associated hourly, 4 km rainfall 

fields for the rainfall-runoff modeling described in Section 4.2.2. Each rainfall event is at most 

72 hours long, with 14 days of “spin-up” pre-pended to initialize seasonally-appropriate initial 

conditions as described in Wright et al. (2017). 

5.2.2. Rainfall-Runoff Hydrologic Modeling 

The 10,000 rainfall events generated in the previous subsection are used as inputs for the 

hydrologic distributed model HLM, which has been adopted at the Iowa Flood Center (IFC) at 

the University of Iowa. HLM’s key features include the decomposition of the landscape into 

hillslope-channel-link components and the use of the mass and momentum conservation 

equations at the hillslope-channel-link scale. The HLM model for Turkey River Basin comprises 

237,000 hillslope-link units with an average hillslope area of 0.018 km2, which are extracted 

from a one-meter resolution LiDAR Digital Elevation Model. The model describes changes in 

storage components using a system of non-linear ordinary differential equations, which are 
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solved using a parallel implementation of Runge-Kutta methods that allow for asynchronous 

integration (Small et al. 2013). The resulting peak flows from each simulation at 5,000 sites 

across the Turkey River Basin are extracted. The 5,000 sites are randomly selected in order to 

cover all the ranges of drainage area from 1 to 4,385 km2 (see Figure 5-1 – Panel A). 

The HLM model has been used and validated in different studies in Iowa (Cunha et al., 

2012; Krajewski et al., 2017; Ricardo Mantilla et al., 2012; Quintero et al., 2018; Seo et al., 

2018; D. B. Wright et al., 2017). Most notable, Wright et al. (2017) present a flood frequency 

analysis for the Turkey River Basin using 500 rainfall scenarios from RainyDay with the 

hydrologic model HLM. Their results show that the HLM is able to replicate not just the 

hydrographs to different spatial scales in the Turkey River Basin, they also show that the peak 

flow quantiles estimated using RainyDay-HLM are higher than the USGS estimation. Wright et 

al. (2017) also demonstrated that the coupling of RainyDay and HLM can produce realistic flood 

frequency results, often superior to traditional RFFA estimates in Turkey River because of 

hydrologic nonstationarities in that watershed, assuming that the nonstationarities results are 

consequence of a trend of rainfall, then recent rainfall remote sensing record should be 

considered as more relevant information for flood frequency estimation. Here, I assumed that the 

synthetic sample of 10,000 flood peaks represents annual maxima flows at each site which is 

representing the underlying population distribution. Therefore, we could calculate the 

exceedance probability p for each peak in the dataset as 𝑝 = 𝑗/(1 + 𝑇𝑚𝑎𝑥), where j is the rank of 

the peak. 
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5.3. Methods 

5.3.1. Error Components 

I extended the regression error component formulation of Kjeldsen & Jones (2009) to 

also examine statistical distributions. For this statistical analysis, I consider 𝑄𝑖(𝑝) as the true 

population value of the PFQ with a probability of non-exceedance p for a site i. Let 𝛩𝑖(𝑝) be the 

sample estimate of 𝑄𝑖(𝑝); therefore,  

𝑄𝑖(𝑝) = 𝛩𝑖(𝑝) + 𝜀𝑖       Equation 5-1 

where, 𝜀𝑖 is the sampling error. Let 𝑄̂𝑖(𝑝) be the estimated value of 𝛩𝑖(𝑝), proffered by a fitted 

function Ψ𝑖
𝑝(𝑋) where X can be the parameters of the function (e.g., drainage area or mean flood 

if Ψ𝑖(𝑋) is a regression model, or a distribution’s parameters if Ψ𝑖(𝑋) is a probability density 

function (PDF)). Θ𝑖(𝑝) can be expressed as 

𝛩𝑖(𝑝) = 𝑄̂𝑖(𝑝) + 𝜂𝑖        Equation 5-2 

where 𝜂𝑖 is the epistemic error, which represents the failure of 𝑄̂𝑖(𝑝) to represent Θ𝑖(𝑝). 

Combining Equations 5-1 and 5-2, 𝑄𝑖(𝑝) can be expressed in terms of sampling error and 

epistemic error: 

𝑄𝑖(𝑝) = 𝑄̂𝑖(𝑝) + 𝜂𝑖 + 𝜀𝑖      Equation 5-3 

In the following subsections, we describe Ψ𝑖
𝑝(𝑋)for different methods to estimate peak 

flow quantiles 𝑄̂𝑖(𝑝).  

5.3.2. Local and Regional Flood Frequency Analysis Approaches 

5.3.2.1. At-Site Flood Frequency Analysis (ASFFA) 

The basis of ASFFA is to fit and select the best PDF of peak flows from a set of 

candidate distributions, with the assumption that the peak flow observations are independent and 
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identically distributed (i.i.d.). ASFFA has well-known limitations and challenges, including the 

validity of the i.i.d. assumption in the presence of nonstationarities, sampling errors, and 

parameter estimation challenges stemming from short time series (Strupczewski et al. 2011).  

Studies by Beard (1974), Haktanir & Horlacher (1993), Hosking & Wallis (1997), 

Strupczewski et al. (2011), and Vivekanandan (2015) examined the Exponential, GEV, 

Generalized Pareto, Normal, Log-Normal, LP3, and P3 distributions in the United States and 

Europe. Beard (1974) (summarized in IACWD 1982) found that the LP3 distribution with a 

regional skew coefficient performed well for the United States. Griffis & Stedinger (2007) 

showed that the LP3 is very flexible and encompasses a wide range of reasonable models for log-

space skews.  

Various methods exist to estimate distribution parameters, including Maximum 

Likelihood Estimation, Method of Moments (MoM), L-moments, Probability Weighted 

Moments, and Expected Method of Moments (e.g., England et al. 2015; Greenwood et al. 1979; 

Hosking & Wallis 1997; Lim & Voeller 2009; Vivekanandan 2015; Vogel et al. 1993). 

Parameter estimates and epistemic errors depend on the method, and some methods are 

theoretically preferable to others. L-moments, for example, are in principle subject to lower 

biases than ordinary product-moments in small-sample situations (Hosking 1990; Hosking & 

Wallis 1997). Bulletin 17C recommends use of the Expected Method of Moments for the 

parameter estimation using an LP3 distribution for the peak flow distributions in the United 

States. (England et al. 2015; Paretti et al. 2014). 

I explored four PDF candidate distributions: the Pearson-3 (P3), LP3, GEV, and 3 

parameter Weibull. I used MoM and L-moments for distribution fitting and selected the “best” 



www.manaraa.com

132  

distribution at each of the 5,000 simulation points based on the root-mean-square error between 

the theoretical and empirical cumulative density functions (CDFs). 

As an example, Ψ𝑖
𝑝(𝑋) for a site i can be prescribed from an assumed CDF 

𝐹(𝑄̂𝑖|𝑎𝑖, 𝑏𝑖, 𝑐𝑖) where 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 are the location, scale and shape parameters of the peak flow 

distribution estimated via MoM or L-moments. Then Ψ𝑖
𝑝(𝑋) = G(𝑎𝑖, 𝑏𝑖, 𝑐𝑖), with G(𝑎𝑖, 𝑏𝑖, 𝑐𝑖) 

representing the numerical estimate of 𝑄̂𝑖 for the case that 𝐹(𝑄̂𝑖|𝑎𝑖, 𝑏𝑖, 𝑐𝑖) = 𝑝, in which p is a 

specific probability of non-exceedance. Then, using Ψ𝑖
𝑝(𝑋) = G(𝑎𝑖, 𝑏𝑖, 𝑐𝑖) to estimate 𝑄̂𝑖(𝑝) in 

Equation 5-3, the peak flow quantile for a probability of non-exceedance p is given by 

𝑄𝑖
[𝐴𝑆𝐹𝐹𝐴]

(𝑝) = 𝐺(𝑎𝑖, 𝑏𝑖, 𝑐𝑖)  + 𝜂𝑖 + 𝜀𝑖     Equation 5-4 

where 𝜂𝑖 is the epistemic error and 𝜀𝑖 is the sampling error for the estimates of 𝑄𝑖(𝑝) from the 

assumed peak flow distribution. If a population is used to estimate the parameters, then 𝜀𝑖is equal 

to zero and all error is attributed to 𝜂𝑖. 

5.3.2.2. Index Flood Method (IFM) 

IFM is a common approach to reduce the sampling error through the pooling of regional 

peak flow information from other sites and has been shown to improve at-site frequency 

estimation (Hosking &Wallis 1997; Odry & Arnaud 2017). IFM assumes that the peak flow data 

from pooled sites follow a common distribution, modified with an Index Flood Factor, which is a 

function of other characteristics, such as the mean annual flood. The presence of regional 

heterogeneity can reduce the performance of IFM (Halbert et al. 2016). I used the mean annual 

flood (𝑄̅) as the Index Flood Factor, calculated as the arithmetic mean of the peak flow 

simulations. 
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As an example of the IFM, lets assume a regional CDF 𝐹(𝑄∗|𝑎[𝑅], 𝑏[𝑅], 𝑐[𝑅]) where 𝑄∗ is 

a normalized peak flow with respect to the Index Flood Factor, and 𝑎[𝑅], 𝑏[𝑅], and 𝑐[𝑅] are the 

weighted average of the distribution parameters of 𝑄∗ for all the sites within the homogeneous 

region. Then, Ψ∗(𝑋) = G(𝑎[𝑅], 𝑏[𝑅], 𝑐[𝑅]), in which G(𝑎[𝑅], 𝑏[𝑅], 𝑐[𝑅]) represents the numerical 

estimate of 𝑄∗ for the case that 𝐹(𝑄∗|𝑎[𝑅], 𝑏[𝑅], 𝑐[𝑅]) = 𝑝, in which p is a specific probability of 

non-exceedance. Using Ψ𝑖
𝑝(𝑋) = 𝑄̅𝑖Ψ

∗(𝑋) to estimate 𝑄̂𝑖(𝑝) in Equation 5-3, the pth peak flow 

quantile estimated for site i is given by 

𝑄𝑖
[𝐼𝐹𝑀]

(𝑝) = 𝑄̅𝑖𝐺(𝑎[𝑅], 𝑏[𝑅], 𝑐[𝑅]) + 𝜂𝑖 + 𝜀𝑖    Equation 5-5 

5.3.2.3. Quantile Regression Technique (QRT) 

QRT involves “regional regressions” between PFQs and a set of explanatory variables 

related to basin characteristics. These regressions can use ordinary least squares (OLS), weighted 

least squares (WLS), or generalized least squares (GLS). OLS assumes equal variance across all 

the sites, while WLS can account for the varying sampling errors in the at-site quantile 

estimators. GLS is the most appropriate because it can account for differing record lengths and 

cross-correlations between concurrent peak flow observations; it can also distinguish between 

sampling and epistemic errors (Haddad & Rahman 2012; Kroll 1998). GLS can produce 

regression coefficients with smaller errors and more accurate estimates than the competing OLS 

estimators (Stedinger & Tasker 1985). GLS, however, is beyond the scope of this chapter. 

I implemented QRT using OLS and a single explanatory variable, either drainage area (A) 

or the mean annual flood (𝑄̅). I explored two QRT models: QRT-A and QRT-𝑄̅, that is, 

𝛹𝑖
𝑝(𝐴𝑖) = 𝜑(𝑝)𝐴𝑖

𝜃(𝑝)       Equation 5-6 

𝛹𝑖
𝑝(𝑄̅𝑖) = 𝜑(𝑝)𝑄̅𝑖

𝜃(𝑝)
       Equation 5-7 
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Combining Equation 5-3 with the estimation of 𝑄̂𝑖(𝑝) using equations Equation 5-6 and 

Equation 5-7, the PFQ with a probability of non-exceedance p for any site i with its respective 

error components is given by 

𝑄𝑖
[𝑄𝑅𝑇−𝐴]

(𝑝) = 𝜑(𝑝)𝐴𝑖
𝜃(𝑝) + 𝜂𝑖 + 𝜀𝑖      Equation 5-8 

𝑄𝑖
[𝑄𝑅𝑇−𝑄̅]

(𝑝) = 𝜑(𝑝)𝑄̅𝑖
𝜃(𝑝)

+ 𝜂𝑖 + 𝜀𝑖     Equation 5-9 

5.3.2.4. Parameter Regression Technique (PRT) 

PRT consists of regional linear regressions between the distribution parameters of an 

assumed distribution with respect to explanatory variables. I singly consider A and 𝑄̅, then for 

instance the regression models using A are: 

𝑎𝑖
[𝑃𝑅𝑇−𝐴]

= 𝜑𝑎𝐴𝑖
𝜃𝑎          Equation 5-10 

𝑏𝑖
[𝑃𝑅𝑇−𝐴]

= 𝜑𝑏𝐴𝑖
𝜃𝑏          Equation 5-11 

𝑐𝑖
[𝑃𝑅𝑇−𝐴]

= 𝜑𝑐𝐴𝑖
𝜃𝑐          Equation 5-12 

where 𝜑𝑎, 𝜑𝑏 , 𝜑𝑐, 𝜃𝑎, 𝜃𝑏 , and 𝜃𝑐 are regression coefficients estimated by means of OLS. Then, 

𝑎𝑖
[𝑃𝑅𝑇−𝐴]

, 𝑏𝑖
[𝑃𝑅𝑇−𝐴]

, and 𝑐𝑖
[𝑃𝑅𝑇−𝐴]

 can be substituted into Equation 5-5 to get the PFQ with a 

probability of non-exceedance p:  

𝑄𝑖
[𝑃𝑅𝑇−𝐴]

(𝑝) = 𝐺(𝑎𝑖
[𝑃𝑅𝑇−𝐴]

, 𝑏𝑖
[𝑃𝑅𝑇−𝐴]

, 𝑐𝑖
[𝑃𝑅𝑇−𝐴]

)  + 𝜂𝑖 + 𝜀𝑖 Equation 5-13 

A similar equation is obtained using 𝑄̅ as explanatory variable 

𝑄𝑖
[𝑃𝑅𝑇−𝑄̅]

(𝑝) = 𝐺(𝑎𝑖
[𝑃𝑅𝑇−𝑄̅]

, 𝑏𝑖
[𝑃𝑅𝑇−𝑄̅]

, 𝑐𝑖
[𝑃𝑅𝑇−𝑄̅]

)  + 𝜂𝑖 + 𝜀𝑖 Equation 5-14 

5.3.3. Evaluation of Scenarios 

I created different “scenarios” in terms of number of peak flows at each site (M) and 

number of pooled sites (N) to quantify the performance of the local and regional methods with 

respect to the “true” PFQs calculated from the empirical CDF using the 10,000 peak flows 
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derived from the RainyDay-HLM framework. I evaluated the scenarios based on a Monte Carlo 

simulation with a random sampling of M and N. Figure 5-2 shows a flow chart of this 

quantification.  

Ten thousand rainfall events create 10,000 peak flows for each of the 5,000 sites in 

Turkey River. As an example, Figure 5-3 shows the precipitation depth and peak flows in the 

outlet of the Turkey River basin for 1,000 simulations of RainyDay-HLM. This dataset contains 

a strong dependence structure in the peak flows because of the aggregation and attenuation of 

runoff events through the river network. We can evaluate the influence of this dependence on 

PFQ estimates in IFM, QRT, and PRT via the inclusion (or exclusion) of dependent (or 

independent) peak flow values between sites. For that reason, the type of dependence in the 

random draw of peak flows in the Monte Carlo simulation needs to be established for each 

scenario. I defined three different types of dependencies between peak flows, as follows: (1) Full 

Dependence, in which the random draws of peak flows for different sites come from the same 

rainfall event; we should thus expect a non-negligible cross-correlation of peak flows; (2) Full 

Independence, in which the random draws of peak flows for different sites come from different 

rainfall events; and (3) Partial Dependence, a case that mimics real datasets, in which some 

portion of the various peak flow records comes from the same rainfall events. 

The sampling schema for the Partial Dependence case is constructed as follows: for site i, 

we started with a with N-1 sites selected randomly without repetition from the 5,000 sites. For 

the N sites (including site i), then an average value of M* peak flows per site is fixed. Then, if we 

assume that in the last 10 years of records all the sites have peak flows, we will need at least 10 

peak flows (𝑀∗ ≥10) with Full Dependence structure between sites. Next, the remainder of the 

peak flows from an initial set with Full Dependence in peak flows of size 2(𝑀∗ − 10) is 
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selected. I assigned an order from 1 to 2(𝑀∗ − 10) to these peaks and performed a uniform 

random selection in the interval 1 to 2(𝑀∗ − 10) to define the number of new peaks assigned to 

each site. Note that the expected value of the number of random selections between 1 to 2 (𝑀∗ −

10) is 𝑀∗ − 10, and if we add the initial 10 peak flows in each site, we will have an expected 

value equal to M*. This approach for the generation of random sites may be useful to create 

synthetic series with a spatial dependence that mimics that observed in real peak flow datasets. 

I evaluated the effect of N, M, and the type of peak flow dependence on the error 

components for each of the local and regional methods for five cases. Case 1 used all the sites 

(N=5,000) with the peak flow population (M=10,000). The goal of the analysis of this case was 

to quantify the contribution of the epistemic error for the different estimation methods of PFQs. 

Here, the true PFQs with respect to PFQs obtained from ASFFA, IFM, QRT, and PRT are 

compared. Case 2 evaluated the sampling error for each site in the estimation of PFQs using the 

local and regional methods. For the PFQ estimates with ASFFA, M peak flows are used, and for 

the PFQ estimates with IFM, QRT, and PRT, the at-site data and regional data from N-1 pooled 

sites are used, with each site having M peak flows with full dependence in the random draw of 

the peak flow data. Then, for each site and each possible combination of N and M, I randomly 

drew a realization of peak flows (without replacement) from the peak flow population. I used 

𝑁 = {10,20,40,60} and 𝑀 = {10,20, … ,140,150}, for a total of 56 possible combinations of N 

and M. A total of 1,000 Monte Carlo realizations were performed for each site i and combination 

of N and M. Case 3 is similar to Case 2, but it has a Full Independence feature in the random 

draw of the peak flow data. Case 4 is similar to Case 2, but it has a Partial Dependence feature in 

the random draw of the peak flow data. For Cases 2, 3, and 4, the mean annual flood (𝑄̅) was 
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calculated as the mean of the peak flow sample, and for the Case 1 it was the mean of the 

population. 

5.4. Results and Discussion 

5.4.1. Distribution Selection 

Case 1, fitting distributions to all 10,000 simulated flood peaks at all 5,000 sites in the 

Turkey River Basin, shows that P3 most accurately represents the simulated peak flow 

distributions. Figure 5-3 illustrates this result for four different sites with differing drainage 

areas. In the subsequent analyses, I thus used the P3 distribution as the “true” regional 

distribution to represent the PFQs. It is important to note that the P3 distribution is an emergent 

invariant for our synthetic hydrological system. Actual peak flow distributions in nature may 

follow heavy tail distributions (e.g. LP3), and in those cases the use of thin tailed distributions 

such as P3 distribution will underestimate the frequency and the magnitude of extremes. The 

determination of the character of the distribution of peak flows in natural rivers remains an open 

in very relevant question.  

The adequacy of the fitted distribution depends on the parameter estimation method; 

Figure 5-4 presents the results based on L-moments. I considered MoM as well. I found a 

significant difference between MoM and L-moments, which I discussed further in Section 5.4.2. 

Figure 5-5 shows the mean (𝜇), standard deviation (𝜎), and skewness (𝛾) of the population (i.e., 

the 10,000 peaks) with respect to drainage area. The first and second moments show strong 

power law dependence with drainage area. However, the third moment (skewness) shows a 

weaker and more complex dependence structure. Figure 5-6 shows the spatial distribution of the 

skewness. The northwest part of the watershed exhibits higher skewness (around 3.5), while 

values elsewhere are around three. Note that the estimations of lower quantiles (i.e., higher return 
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periods) are very sensitive to the third moment; the performance of the local and regional 

methods, therefore, depends on the accuracy of its prediction. In Section 5.4.4, I provide insight 

into the geomorphologic properties that explain the spatial variability of the skewness. 

5.4.2. Evaluation of Epistemic Error 

I evaluated the epistemic errors associated with the four estimation methods using data 

obtained from the scenario described in Case 1. The epistemic error is represented as the relative 

bias (RB) calculated as the relative difference of the estimated PFQs by an estimation method 

(ASFFA, IFM, QRT, PRT) with respect to the true PFQs calculated from the empirical CDF. 

Figure 5-7 compares the estimation of the PFQs with 10-year, 100-year, and 1,000-year return 

periods using P3 fitted using MoM and L-moments. I analyzed the robustness of the MoM and 

L-moments by comparing the PFQ estimations using the entire peak flow population at each site, 

and also after removing the two highest peak flows at each site because P3-based PFQs estimates 

using MoM can be sensitive to the extreme values. Figure 5-7 - Column A shows this result; 

some sites have a relative error of approximately -50% for the 10-year PFQ, 25% for the 100-

year PFQ, and 50% for 1,000-year PFQ. After the elimination of the two highest peak flows at 

each site (see Figure 5-7 -  Column B), MoM epistemic errors become more stable, with a mean 

RB near zero. The L-moments, on the other hand, provide unbiased estimates for all the sites, 

highlighting its robustness to extreme values (Hosking 1990; Hosking & Wallis 1997). The mean 

(standard deviation) RB for the 5,000 sites using the P3 with L-moments and the entire flood 

peak population is -0.4% (1.3%) for 10-year PFQs, -0.3% (2.4%) for 100-year PFQs, and -3% 

(5%) for 1,000-year PFQs. Subsequent PFQs for ASFFA, IFM, QRT, and PRT will be based on 

the P3 distribution fitted using L-moments. 
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The evaluation of the epistemic error for the regional methods (IFM, QRT, and PRT) was 

based on the estimation of the peak flow quantiles using the peak flow population and the 

pooling of all 5,000 sites. Figure 5-8 shows the epistemic error as the RB for the IFM with 

respect to the drainage area. IFM uses the mean annual flood as the Index Flood Factor (i.e., 

scaling factor) to estimate the regional CDF. I found that the mean and standard deviation of the 

RB of the 10-year PFQ for the 5,000 sites are 0% and 3%, respectively. For the 100- and 1,000-

year return periods, the variability of the RB increases, with means (standard deviations) of 0% 

and 4% (9% and 12%), respectively. In addition, a non-monotonic pattern in the epistemic error 

as a function of drainage area for the 100- and 1,000-year return periods is observed. We can 

attribute this to the fact that the regional variability of the skewness is not well explained by the 

regional CDF under IFM, which is a consequence of the Index Flood Factor’s inability to explain 

all regional peak flow variability.  

Figure 5-9 presents two versions of epistemic errors for the QRT and PRT. The first uses 

drainage area as the explanatory variable; the second uses the mean annual flood. I found that 

models using the mean annual flood are equivalent in terms of epistemic error with the results 

found in the IFM. For example, we found differences of less than 1% between both the means 

and the standard deviations of the RB from QRT, PRT, and IFM. QRT and PRT models using 

drainage area exhibit higher RB, which varies strongly by drainage area. For instance, the 

average RB of the 1,000-year quantiles from QRT using the drainage area is approximately 25% 

for subbasins with drainage areas of ~1 km2, decreasing to -25% for subbasins around 100 km2, 

before increasing to 40% for subbasins with drainage areas larger than 1,000 km2. 
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These results highlight the fact that the epistemic error is lower in the ASFFA in 

comparison to regional approaches in which the entire population is used. RFFA methods should 

perform better in small sample situations, however, as considered in the next subsection. 

5.4.3. Evaluation of Sampling Error 

As described in Cases 2, 3, and 4 in Section 3.3, I used the Monte Carlo simulation to 

quantify the contribution of sampling error to the total error (𝜂 + 𝜀) in the estimation of PFQs. 

The only difference among Cases 2, 3, and 4 is the type of random draw of peak flows from the 

peak flow population. I will start discussing the results for Case 4, since it represents partial 

dependence which is plausibly resembles the selection of peak flow samples of real data sets. 

Figure 5-10 shows an example for the Case 4 of the range of the total errors as RB in PFQ 

estimates from ASFFA, IFM, QRT, and PRT for an arbitrary site with a drainage area of 100 

km2. This illustrates the RB of the 10-year, 100-year, and 1,000-year PFQ estimates as a function 

of M and with N equal to 20. The 1,000 Monte Carlo simulations for each M allow estimation of 

the range of RB, shown in Figure 5-10 in the 0.05-0.95 quantile range. The results show that 

regional methods demonstrate a similar performance in terms of the 0.05-0.95 quantile range of 

RB. The influence of “pooling” in the regional methods improves the quantile estimation with 

respect to the ASFFA for longer return periods. For example, the 0.05-0.95 quantile range of RB 

of the 1,000-year quantile estimate of ASFFA for M equal to 50 is in the interval [-50%, +50%], 

whereas for the regional methods, the interval is [-45%, +25%].  

The results presented in the Figures 5-11, 5-12, 5-13, and 5-14 are for all the sites. For 

this purpose, the results for all 5,000 sites are grouped into four drainage area “bins”: Group 1 – 

sites with A between 1 and 10 km2; Group 2 – sites with A between 10 and 100 km2; Group 3 – 

sites with A between 100 and 1,000 km2; and Group 4 – sites with A between 1,000 and 4,385 
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km2. In Figure 5-11, I present the results for the Monte Carlo simulations for Case 4 using N=20 

and M=30. These results are consistent with Figure 5-10. I found that the estimate for the 10-year 

quantile is similar among the four methods, while the 0.05-0.95 quantile range for the regional 

methods is smaller than ASFFA for longer return periods. Also, this result is consistent with the 

systematic bias in the epistemic error with respect to the drainage area (see Figure 5-8 and Figure 

5-9). We can observed this bias along the mean of the boxplots from the Group 1 to Group 4 in 

Figure 5-11. Once again, the results show that the regional methods have similar performance in 

terms of the 0.05-0.95 quantile range of RB. 

The previous results were based on 20 pooled sites (N=20) and M=30. Figure 5-12 shows 

the total error (as RB) for the estimation of the 100-year PFQ extracted from Case 4 using 

ASFFA for differing sample size (M), and spatial scale (From Group 1 to Group 4). Figure 5-13 

shows the total errors for the estimation of the 100-year PFQ extracted from Case 4 using IFM, 

QRT, and PRT for 10 and 60 pooled sites (N) as a function of sample size (M) and spatial scale 

(From Group 1 to Group 4). The results from ASFFA show a reduction of the total error with 

increasing sample size and exhibit the aforementioned pattern in the bias on the mean error 

through the scales. The error distributions for IFM, QRT, and PRT are very similar for N=10 and 

N=60, likely attributable to the relatively limited variability presented in our (small) region (see 

Figure 5-6). It is quite likely that “real-world” RFFA, which typically pools data from larger 

regions and distinct watersheds, will exhibit stronger dependence on N.  

The results for Case 2 (full dependence), Case 3 (full independence), and Case 4 (partial 

dependence) are used to evaluate the differences in total errors caused by concurrent peak flows 

between sites. I found no significant change between the error distributions among the different 

dependency structures (see Figure 5-14). This is because the RFFA methods used in this study 
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are not considering the correlation between sites. This result implies that the use of dependent 

data in regional methods that do not incorporate spatial correlations in the model structure will 

provide similar estimates to those using independent data. Therefore, the inclusion of techniques 

that take advantage of the peak flow dependencies between sites such as GLS or topological 

kriging should reduce the total error of regional methods for the estimation of PFQs (Archfield et 

al. 2013). 

5.4.4. Insights into the Regional Variability of Skewness 

The two methods for reducing total PFQ error are to lessen epistemic error or sampling 

error. Sampling error can be addressed in two ways: increased sample size through additional 

sites or additional years of observations (if available), or more robust parameter estimation 

methods. Epistemic error in RFFA is caused by failure of regional models to represent peak flow 

variability in the region, principally the skewness, which will control the right tail of the peak 

flow distribution. The regional models explored in this study are based on typical explanatory 

variables, such as drainage area or the mean annual flood. The epistemic errors presented in 

Figures 5-8 and Figure 5-9 demonstrate a systematic bias related to the inability of the regional 

models to capture the skewness shown in Figure 5-6. Therefore, physical reasoning to explain 

the spatial variability of skewness is crucial for future development of RFFA models.  

I hypothesize four effects to explain the spatial variability of skewness presented in 

Figure 5-6: Hypothesis 1: heterogeneities in the runoff generation due to land cover. Hypothesis 

2: sampling effects generated by the RainyDay data, assuming that 10,000 storms are not enough 

to capture the peak flow population. Hypothesis 3: attenuating influences of the river network 

structure. Hypothesis 4: watershed orientation relative to storm movement and shape. I examined 

the latter three hypotheses further. 
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We can discard Hypothesis 1 because our HLM configuration for the Turkey River used 

in this study does not consider differences in land use or land cover. I address Hypothesis 2 by 

using a second set of 10,000 rainfall events from RainyDay, generated using identical 

parameters. I calculated the ratios of moments and quantiles using the initial set (Set 1) and the 

new set (Set 2). Figure 5-15A shows that the ratios of these quantities are around 98%. In 

addition, Figure 5-16 shows that Sets 1 and 2 have very similar spatial patterns of skewness. 

Therefore, we can concluded that the sampling effect from RainyDay in our simulations fails to 

explain the regional variability on skewness.  

Regarding Hypothesis 3—if we assume that each sub-basin is likely to observe the same 

rainfall events in the SST framework, then drainage network structure should partially control 

differences in peak flow skewness. One alternative to describe the river network structure within 

the watershed is by means of the Width Function. Multiples studies have confirmed the relation 

between Width Function and streamflow response (e.g., V. K. Gupta & Mesa, 2014; Moussa, 

2008). To address this hypothesis, I evaluated linear and nonlinear regression models between 

skewness and 34 Width Function descriptors (WFDs), in addition to the drainage area and mean 

flood. The 34 WFDs are proposed and described in Chapter 3. Based on an exhaustive search 

and the Akaike Information Criteria (AIC), I found that a linear model including the drainage 

area and the Mass of the Width Function at region (𝑀𝑁𝑆) improves the adjusted coefficient of 

determination (i.e., adjusted R2) from 0.22 to 0.34 with respect to a linear model with only 

drainage area (see Figure 5-15B). We  can concluded that the WFDs cannot fully explain the 

skewness variability, but that this result could guide future attempts to relate regional variability 

of skewness to geomorphologic metrics. 



www.manaraa.com

144  

Hypothesis 4 supposes that the relationship between basin orientation and the 

predominant orientation of rainfall events in the region could impact the skewness variability in 

the region. Figure 5-15C shows a directional histogram of skewness. The direction of each sub-

basin is assigned as the dominant angle of the watershed measured counterclockwise with East at 

0°.  

I found that subbasins with the highest skewness have an orientation between 130° and 

170°, though most of the subbasins within Turkey River Basin have a similar direction. 

Therefore, I performed a new set of RainyDay-HLM simulations in which I rotated the 

watershed 90° counterclockwise to evaluate the influence of watershed direction on skewness. 

Figure 5-16 shows that this rotation produces a new zone with higher skewness (around 3.5) near 

the watershed outlet. Therefore, we can surmise that the relationship between basin direction and 

storm motion (which is generally from the west-southwest in the state of Iowa, roughly 

speaking) exerts an important control on the spatial variability of skewness. 

5.5. Conclusions 

This study is the first to evaluate at-site and regional flood frequency analysis (RFFA) 

techniques using a physically-based synthetic framework based on distributed rainfall-runoff 

modeling. This approach has the advantage of providing physically plausible populations of 

flood flows at a large number of sites. Whether or not the peak flow distributions obtained by 

RainyDay-HLM adequately represent the “true” population of peak flows in the Turkey River is 

beyond the scope of this study. The findings of this study are pertinent, however, because the 

variability in the physically-based synthetic peak flow distributions modeled using RainyDay-

HLM are “built” using real rainfall structures and geomorphologic characteristics that have not 
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been considered in previous synthetic studies of RFFA. The findings of this study help further 

the understanding of the following issues:  

(1) Comparison of estimates of peak flow quantiles (PFQs) between the at-site flood 

frequency analysis (ASFFA), the Index Flood Method (IFM), the quantile regression 

technique (QRT), and the parameter regression technique (PRT). 

(2) Evaluation of epistemic errors in the PFQ estimation for the four techniques, and 

of sampling errors as a function of sample size and number of pooled sites for IFM, QRT, 

and PRT.  

(3) Evaluation of the impact of different intersite peak flow dependency structures in 

the sampling of peak flows for the estimates of PFQs based on IFM, QRT, and PRT. 

(4) Exploration of different geomorphologic factors for explaining the regional 

variability of skewness. 

The epistemic error analysis for ASFFA shows that the P3 using L-moments is an 

accurate representation of the PFQs for the 5,000 sites in the Turkey River Basin. The RFFA 

methods (IFM, QRT, and PRT) exhibit higher epistemic errors with respect to the epistemic error 

of ASFFA with P3 when the entire synthetic population is used for model fitting. The regional 

methods reduce the sampling error in scenarios with small samples of peak flows. This reduction 

makes them preferable for the estimation of peak flow quantiles in practice; the previous result is 

well-known in the literature. However, this study demonstrates that the distribution of errors for 

QRT, PRT, and IFM are very similar. I showed that the use of different explanatory variables for 

the construction of the QRT and PRT leads to strong differences in the model structure; in 
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general, I found that the mean annual flood is preferable to drainage area. In terms of the number 

of pooled sites in the regional methods, I found that the IFM, QRT, and PRT perform similarly 

with 10 to 60 pooled sites, a result that can be explained by the small variability in the synthetic 

peak flow distributions in the watershed. Also, the evaluation of the type of peak flow 

dependence between sites shows that the error distributions are similar in the three evaluated 

cases (Full Dependence, Partial Dependence, and Null Dependence). This result suggests that the 

estimation of PFQs can be improved with the implementation of estimation methods that take 

advantage of the dependence structure of peak flows between sites (e.g., GLS, topological 

kriging, max-stable process models). Finally, I found that river network structure and basin 

direction both help to partially explain the regional variability of the skewness. 

The use of synthetic peak flows based on a combined framework of SST and a distributed 

hydrologic model that considers extreme rainfall and river network structure opens many 

avenues for study of peak flow estimation methods. This study covers only a small part of the 

large list of analyses that could be explored with this dataset. I believe that future studies based 

on this approach should address three main points: (1) the delineation of hydrologically 

homogeneous regions, including geomorphologic factors such as basin boundaries, river network 

characterization using Width Function Descriptors, and orientation of the watershed; (2) 

evaluation of PFQ estimation methods with statistical techniques that include the correlation of 

peak flows between sites; and (3) construction of regional models that capture more accurately 

the regional variability of skewness. 
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Figure 5-1. Location of the 5,000 simulated streamflow sites in Turkey River (black circles). The 

yellow circle indicates the basin outlet. The red polygon in panel B represents the transposition 

region used in the SST. 
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Figure 5-2. Flowchart describing the processes in the evaluation of the model and sampling errors in the estimation of peak flow 

quantiles. RainyDay panel is adapted from Wright et al. (2017).  
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Figure 5-3. Precipitation depths and peak flows in the outlet of the Turkey River basin for all the 

10,000 simulations of RainyDay-HLM. The precipitation depth is calculated over the rainfall 

duration of 72 hours. Shading indicates the number of overlaying points.
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Figure 5-4. Probability distribution fitting for four sites representing different spatial scales of the 

peak flow population (10,000 peak flows per site). The fitted frequency curves are from the 

Pearson Type III (P3), Log Pearson Type III (LP3), Generalized Extreme Value (GEV), and 3 

parameter Weibull distributions. The empirical frequency curve is included as reference. 
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Figure 5-5. Mean, standard deviation, and skewness of the peak flow population of each of the 

5,000 sites in the Turkey River watershed as a function of drainage area.  
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Figure 5-6. Spatial distribution of the skewness of the peak flow distribution using the 

RainyDay-HLM framework. 
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Figure 5-7. Epistemic error in the 10- , 100- , and 1,000-year PFQs estimates using the P3 

distribution fitted via MoM (gray circles) and L-moments (black circles) for the 5,000 sites. 

Column A contains the relative bias using the entire population (10,000 peak flows), and Column 

B contains the relative bias after removing the 2 largest peak flows at each site.  
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Figure 5-8. Epistemic error in the 10-, 100-, and 1,000-year PFQ estimates using IFM for the 

5,000 sites. 
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Figure 5-9. Epistemic error in the 10-, 100-, and 1,000-year PFQ estimates using the QRT-A, QRT-𝑄̅, PRT-A, and PRT-𝑄̅ for the 

5,000 sites.  
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Figure 5-10. Example of the total error in the 10-, 100-, and 1,000-year PFQ estimates with ASFFA (with P3 and L-moments), IFM, 

QRT, and PRT for an arbitrary site with a drainage area of 100 km2. The results are presented as a function of the peak flow sample 

size M= {10, 20, …, 150}. Shaded regions denote the 0.05-0.95 quantile range from the 1,000 Monte Carlo simulations for each M. 

The simulation uses N = 20 sites with Partial Dependence.  
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Figure 5-11. Total error distribution of ASFFA, IFM, QRT, and PRT for four different spatial 

scales and 10-, 100-, and 1,000-year return periods. Group 1: 1 to 10 km2, Group 2: 10 to 100 

km2, Group 3:100 to 1,000 km2; and Group 4: 1,000 to 4,385 km2. Group 1, Group 2, Group 3, 

and Group 4 have 3,250, 1,131, 469, and 150 sites, respectively. The error distribution is 

obtained via aggregation of all the sites that belong to that spatial scale; each site has 1,000 

independent Monte Carlo realizations. The simulation uses M = 30, N=20 with Partial 

Dependence. The whiskers represent the 0.05-0.95 quantile range. 
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Figure 5-12. Distribution of total errors for the 1,000-year PFQ estimates using ASFFA for the 

four different groups. The results are presented for simulations with samples sizes of M= 

{10,30,50,100} with Partial Dependence. The whiskers represent the 0.05-0.95 quantile range. 

The percentages indicate the values outside of the plot range 
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Figure 5-13. Distribution of total errors for the 1,000-year PFQ estimates using IFM, QRT, and 

PRT for the four different groups. Each column represents a specific method, and each row 

represents a different number of pooled sites for the regional methods. The results are presented 

for simulations with samples sizes of M= {10,30,50,100} with Partial Dependence. The whiskers 

represent the 0.05-0.95 quantile range. The percentages indicate the values outside of the plot 

range 
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Figure 5-14. Distribution of total errors for 1,000-year PFQ estimates using ASFFA, IFM, QRT, 

and PRT for four different spatial scales. Each row represents a different type of intersite 

dependence for the selection of peak flows for the regional methods. The Monte Carlo 

simulation uses M=30, N= 20. The whiskers represent the 0.05-0.95 quantile range. 
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Figure 5-15. Evidence for the evaluation of hypotheses to explain the spatial variability of the 

skewness. A) Sampling effect: Ratios of moments and quantiles of peak flows for two different 

simulation sets. B) River network structure: Regression analysis between skewness and Width 

Function descriptors  (𝑓(𝐴, 𝑀𝑁𝑆) = −0.00013𝐴 + 1.31𝑀𝑁𝑆 + 1.78 with 𝑅𝑎𝑑𝑗
2 = 0.34), the 

regression using just the drainage area is used as a reference (𝑓(𝐴) = −0.00012𝐴 +
3.07with 𝑅𝑎𝑑𝑗

2 = 0.22) C) Main orientation of each sub-basin within the Turkey River Basin as 

a directional histogram of the skewness. 𝑀𝑁𝑆:Mass of the Width Function at region.  
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Figure 5-16. Spatial variability of the skewness from three separate simulation sets (i.e. populations) using the RainyDay-HLM 

framework. Sets 1 and 2 use identical configurations to highlight that stochastic variability is minimal between the two populations. 

“Set – Rotated (90)” has a rotation of 90° counterclockwise (see inset panel).
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[5] Adapted from: Perez, G., Mantilla, R., & Krajewski, W.  (2018). “Estimation of historical-

annual and historical-monthly scale-invariant flow duration curves with implementation for 

Iowa”. Journal of Hydrologic Engineering. 

CHAPTER 6: ESTIMATION OF HISTORICAL-ANNUAL AND HISTORICAL-MONTHLY 

SCALE-INVARIANT FLOW DURATION CURVES: WITH IMPLEMENTATION FOR THE 

STATE OF IOWA[5] 

6.1. Introduction  

This chapter presents an extension of the scaling theory of floods applied to streamflow 

distributions as Flow Duration Curves (FDCs). A FDC is a plot that shows the percentage of 

time when streamflow is likely to exceed or equal a given discharge value over a specific period 

of observation. The FDC provides a picture of streamflow temporal variability for a specific 

location. Its interpretation in terms of recurrence depends on the time scale of flow averages 

(days, weeks, months, or years), and the sampling period of streamflow records. The most 

conventional FDCs are the historical and the median-annual. Researchers calculate the historical 

FDC using the entire period of record utilizing historical daily flows. On the other hand, the 

median-annual FDC is calculated as the median of FDCs for independent water year records of 

daily flows. These FDCs have a wide application range in water resources, including hydro 

power design, water-quality management, sediment load estimates, and infrastructure design 

(Hickox & Wessenauer, 1933; Mitchell, 1957; Vogel & Fennessey, 1995). A deficiency of the 

historical FDC and the median-annual FDC is that they do not describe changes in flow 

likelihood because of the seasonal variability of the streamflow throughout the year. For 

example, extremely low flows caused by droughts during the month of June can be comparable 

in value to very high streamflow values typical for the month of December. Alternatively, we 

can describe this type of variability by constructing FDCs from daily flow records associated 

with specific months. For instance, if the historical daily flow records are separated by month, 

then an FDC can be estimated for every month (e.g., the January’s FDC is constructed with all 
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the daily records observed that month), and these 12 monthly FDCs can more accurately 

represent the seasonal variability in probability of occurrence month by month.  

When streamflow data are available for a specific site, the FDC can be straightforwardly 

estimated using parametric or non-parametric fitting procedures. However, streamflow records 

are limited around the world, and the prediction of FDC at ungauged locations is one of the 

challenges for the hydrologic community (Sivapalan et al., 2003). In response to this problem, 

researchers have proposed and implemented regionalization methods to estimate FDCs. The 

effectiveness of these regionalization methods depends on their ability to capture the spatial and 

temporal hydrological variability in a region using independent explanatory variables such as 

precipitation, land cover, evapotranspiration, and geometric properties of the basin and drainage 

network. In cases where hydrological heterogeneity cannot be fully captured or described by 

independent variables, the region is partitioned into hydrologic sub-regions. The presence of 

these sub-regions creates a disadvantage in the estimations of FDC for large domains, both in 

terms of the development of regional equations, as the primary explanatory variables need to be 

identified independently, and in terms of applications, because in many cases a catchment of 

interest can include many sub-regions.  

One of the most recent motivations for the estimation of FDC at ungauged sites came 

from the need to classify streamflow outputs from distributed hydrological models (DHM) that 

provide streamflow estimations at local, regional, and national scales. The USGS provides 

classified streamflow maps for the nation using observed streamflow values and historical FDCs 

for sites with long-term records (http://waterdata.usgs.gov/ia/nwis/rt). USGS scientists classify 

the flow condition as a function of the percentile of the streamflow for a particular day of the 

year with a total of 365 references. However, this classification, based on historical observations, 

http://waterdata.usgs.gov/ia/nwis/rt
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is for gauged sites only. An alternative is to estimate the FDC based on the model outputs; 

however, this requires an extensive simulation of long periods (more than 30 years), which is a 

difficult task for large regions. The USGS maps with classified streamflow are useful to us 

because they provide an immediate visual assessment of the state of rivers in different regions of 

the country. However, when there is a need to analyze a region or state in more detail, the 

sparsity of information makes the picture incomplete (see Figure 6-1). In contrast, DHMs 

provide current and future streamflow estimates across the entire drainage network in the 

domain, including ungauged locations. However, actual streamflow values on a map are difficult 

to interpret because of the multiple scales and regional heterogeneity in space and time. A value 

of 100 m3/s on a map would be difficult to interpret correctly: is it a high flow for a small basin 

or a low flow for a large basin? The correct interpretation of streamflow outputs from hydrologic 

models is crucial for water-use decision-making. The potential use of these streamflow outputs 

requires interpretation associated with the flow conditions related to flow magnitude. Without 

such tools, providing discharge estimates at locations where there is no reference data is not very 

meaningful. The simplest interpretation tool is the translation of flow magnitudes into flow 

frequencies using an FDC. Researchers can establish flow frequency thresholds to determine if 

the streamflow is in very low, low, normal, or high condition at an arbitrary location. This 

hydrologic information is not only relevant for the scientific community, but also for the general 

public because local communities can better understand streamflow conditions in a stream 

channel of interest, identifying impacts to the community either by droughts, floods, agricultural 

practices, recreational uses, or water supply activities. 

Examples of the extensive use of regional hydrologic distributed models include the Iowa 

Flood Center (IFC) Hillslope Link Model (HLM) for the state of Iowa (Mantilla & Gupta, 2005; 



www.manaraa.com

 166  

Quintero et al., 2016) and the National Water Model (NWM) for the entire continental United 

States (Maidment, 2016). The HLM estimates the current and future streamflow for 420,000 

stream channels embedded in Iowa’s drainage domain. The Iowa Flood Information System web 

platform (Krajewski et al. 2017; Demir & Krajewski, 2013) disseminates this information, 

providing access for local authorities and the public. At a national scale, the National Oceanic 

and Atmospheric Administration (NOAA) launched the National Water Model, which provides 

streamflow forecasting for 2.7 million rivers in the United States based on the National 

Hydrography Dataset NHDPlusV2. These hydrologic models make important contributions to 

support water-use decision-making for current and future scenarios. 

The literature documents a broad range of methodologies to estimate FDCs at ungauged 

locations. These methodologies can be classified in two broad categories. The first estimates 

streamflow distributions based on parametric statistical distributions, in which the distribution 

parameters are approximated from explanatory variables for estimations at ungauged sites 

(Doulatyari et al., 2015; Fennessey & Vogel, 1990; Li, Shao, Zhang, & Chiew, 2010; 

Longobardi & Villani, 2013). The second approach uses regression analyses performed between 

specific streamflow quantiles or distribution-moments with respect to a set of explanatory 

variables. This method is well described in work by Farmer et al. (2015); Flynn (2003); Singh 

(1971); and Yue & Gan (2004), among others. 

The USGS has developed a methodology to estimate streamflow quantiles for the 

construction of FDCs at ungauged sites in Iowa (Linhart et al., 2012). They used independent 

streamflow quantile regressions employing 113 streamflow gauges with at least 10 complete 

years of daily mean streamflow, without regulation or diversion. The method uses a regression 

analysis between discharge for a particular quantile and independent variables that describe 
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physical and climatic basin characteristics. In total, they explored 57 physical and climate basin 

characteristics as explanatory variables. They used the stepwise selection method to identify the 

significant independent variables in the regression analysis. Once researchers had filtered the 

independent variables, they performed an Ordinary Least Square (OLS) regression analysis and 

Weighted Least Squares (WLS) to determine the best set of regression equations. They 

conducted this regression analysis with an imposed limit of three independent variables for each 

equation to minimize overfitting of the regression models. The WLS multiple linear regression’s 

advantage is that it accounts for differences in record length. In addition, the study uses left-

censored regression for streamflows with a 99% probability of exceedance (low flow), with a 

censoring threshold of 0.1 ft3/s, and the goal of reducing the standard error in the regression 

analysis. They fitted 15 equations for 15 quantiles: 0.01, 0.05, 0.10, 0.15, 0.20, 0.30, 0.50, 0.60, 

0.70, 0.80, 0.85, 0.90, 0.95, and 0.99. Each equation includes up to three independent variables, 

accounting for the following: drainage area; mean annual precipitation; percent area underlain by 

hydrologic soil type B, C, and D; relative stream density; hydrograph separation; streamflow-

variability index; and a measure of the steepness of the slope of a duration curve. The web-based 

tool StreamStats (Ries et al., 2009) implements this method, allowing for reconstruction of the 

FDC from the 15 streamflow quantiles. 

Although the rigorous statistical analysis presented in Linhart et al. (2012) provides 

convenient estimations of 15 streamflow quantiles that allow us to reconstruct the FDC, the 

estimation of FDC could be improved and compacted for easier implementation in larger 

domains. I identified three main drawbacks in Linhart et al. (2012). First, the changes to the 

physical and climatic variables used to describe different streamflow quantiles make it difficult 

to track the overall role of an explanatory variable in the entire streamflow distribution. Second, 
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the fitting of independent equations for specific streamflow quantiles (𝑄𝑝) with different 

explanatory variables does not guarantee a monotonic decreasing trend in the FDC (𝑄𝑝𝑖
>

𝑄𝑝𝑗
 𝑤𝑖𝑡ℎ 𝑝𝑖 < 𝑝𝑗), which implies that 𝑄𝑝𝑖

< 𝑄𝑝𝑗
for 𝑝𝑖 < 𝑝𝑗 could occur. Third, the authors of 

Linhart et al. (2012) were only concerned with the historical FDC, which does not capture the 

streamflow seasonality described at a monthly scale. 

This chapter is organized as follows: the Section 6.2 describes the research objectives of 

this study; the Section 6.3 describes the information and methods used to estimate FDCs at 

ungauged sites (this section will describe the regression analysis, the selection of the explanatory 

variables, the validation test, and the final construction of a piecewise continuous monotonic 

FDC); in Section 6.4, I discuss the results and examine the outcomes of the FDC estimations for 

the state of Iowa at ungauged sites; and finally, the main results are synthetized in the closing 

comments. 

6.2. Research Objectives  

In this study, our primary objective is to estimate historical-annual and historical-monthly 

FDCs at ungauged sites in Iowa. I define the following specific objectives in the construction of 

FDCs: 1) estimate FDCs with a single explanatory variable for an easy implementation; 2) fit a 

continuous and monotonic FDC for a representative range of quantiles; and 3) estimate FDCs for 

both historical and monthly scales to capture the streamflow variability during the year. 

For the development of research objectives, the following hypothesis is stated: the long-

term mean annual streamflow (𝑄̅) captures most of the hydrological heterogeneities of 

streamflow quantiles across space and watershed scales. I explore this hypothesis recognizing 

that the mean annual flow integrates the spatial variability of two hydrologic fields (precipitation 



www.manaraa.com

 169  

and evapotranspiration) across the watershed through the relationship given by the long-term 

water balance equation. This concept is expanded in Section 6.3.1. I use power-law regressions 

following the existent literature on the connection between peak flow quantiles and drainage area 

(Gupta & Dawdy, 1995; Gupta & Waymire, 1990, 1998; Mantilla et al., 2011; Ogden & Dawdy, 

2003) as well as other studies showing the connection between drainage area and mean annual 

flow within a scale-invariant framework (Vogel & Sankarasubramanian, 2000; Yue & Yew Gan, 

2004). This hypothesis is reinforced by Poveda et al. (2007), who uncovered the scaling 

connections between peak flow quantiles and mean annual flow. While Poveda et al. (2007) 

made the connections with peak flow quantiles rather than streamflow quantiles, their results 

suggest that the mean annual flow contains valuable information to describe different streamflow 

frequencies. 

6.3. Materials and Methods  

In this study, I calculate the empirical non-parametric historical-annual FDCs for gauged 

sites by sorting the daily streamflow record of n values from the largest to the smallest and 

assigning each position a rank (R). Each ranked position is associated with a probability (p), 

which represents the chance that the sample exceeds or equals the corresponding streamflow. 

The cumulative probability p associated with R can be calculated with different approaches 

(Beard, 1974; Blom, 1958). I calculated p using the Weibull plotting position (Weibull, 1939), 

which is approximately unbiased for quantiles: 

𝑝 =
𝑅

𝑛+1
        Equation 6-1 

This study uses daily mean streamflow records from 114 streamflow gauges not affected 

by regulation or diversions (see Figure 6-2) and located across Iowa up to September 2014, 

employing only complete water years. Data flags provided by the USGS help identify the sites 
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with regulation or diversion. These gauges are grouped in two different data sets for different 

analyses. The first, called the calibration set, included 74 streamflow gauges with more than 30 

years of records; I used these in the regression analysis section. The remaining 40 streamflow 

gauges are used for a validation test and have streamflow record durations ranging from 10 to 30 

years. Tables 6-1 and 6-2 show some climatologic features and duration of records for the 

calibration and validation gauge sets. 

To construct the historical-annual FDC, I estimate the streamflow quantiles with the 

complete daily streamflow record for each streamflow gauge using Equation 6-1. For the 

historical-monthly FDC, I divided the streamflow records by months and again used Equation 6-

1. The streamflow quantiles are defined for probabilities of exceedance ranging from 0.01 to 

0.99 with a step of 0.001, for a total of 981 quantiles. By selecting streamflow gauges with more 

than 30 years with small step (0.001) between frequencies. In the case of monthly FDCs, I 

grouped the data by months; therefore, there is a significant reduction in the number of 

streamflow observations. Thus, the streamflow gauges in the calibration set must have more than 

30 years of records to guarantee at least 980 daily streamflow observations per month. In cases 

where the data are not sufficient, Equation 6-1 does not give frequency values for the exact 

quantile in the range of 0.01 to 0.99 with step of 0.001. Therefore, I use a linear interpolation 

between frequencies obtained from Equation 6-1 to get the desired streamflow quantiles estimate 

for every streamflow gauge. I censored streamflow records with zero flow values at 0.001 ft3/s 

(≈0.0003 m3/s) to avoid problems with the logarithmic transformation in the regression equations 

described in the next section. 
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6.3.1. FDC Scaling Models and Regression Analysis 

I fit four different regression models to estimate quantiles in the gauges calibration set. 

The model configurations result from assumptions of statistical simple-scaling or multi-scaling, 

in which the intercept (𝛼𝑝) and scaling exponent (𝜃𝑝) are the “scaling parameters” for a specific 

probability of exceedance (p). Simple-scaling arises when the scaling exponent in the power law 

relations are constant for all  frequencies (quantiles), and multi-scaling arises when they are not 

(Vijay K. Gupta & Waymire, 1990). One of the specific objectives was to come up with a simple 

structure of FDC described by a single explanatory variable. In the literature, it is well 

recognized that the drainage area (A) captures a large part of the streamflow variability; however, 

other variables may be relevant in the representation of the streamflow distributions, especially 

in heterogeneous regions (Farmer et al., 2014; Farmer et al., 2015). I decided to explore the A 

and the long-term mean annual streamflow (𝑄̅) as independent explanatory variables. The 𝑄̅ is 

selected as explanatory variable because by definition, it integrates the spatial variability of 

precipitation and evapotranspiration across the watershed. The mean annual flow (𝑄̅) can be 

estimated from the long-term water balance equation,  

𝑄̅ = 𝐴(𝑃̅ − 𝐸𝑇̅̅ ̅̅ )       Equation 6-2 

where 𝑃̅ is mean annual precipitation and 𝐸𝑇̅̅ ̅̅  is mean annual evapotranspiration. The long-term 

water balance is used to estimate the mean annual flow because we can estimate this quantity at 

gauged and ungauged sites. For this estimation, I used the drainage area reported by the USGS, 

the mean annual precipitation from the PRISM product (Oregon State University, 2016), and 

evapotranspiration from a continuous global record of land surface evapotranspiration from 1983 

to 2006 (Zhang et al., 2010) (see Tables 6-1 and 6-2 for these values in every streamflow gauge).  

The four scaling models and their corresponding regression equations are given by 
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SSA Model: 
𝑄𝑝

𝛼𝑝𝐴
 𝑍1=

𝑑  which implies        𝐸[𝑄𝑝|𝐴] = 𝛼𝑝 𝐴  Equation 6-3 

SSQ Model: 
𝑄𝑝

𝛼𝑝𝑄̅
 𝑍2=

𝑑   which implies        𝐸[𝑄𝑝|𝐴] = 𝛼𝑝 𝑄̅ Equation 6-4 

MSA Model: 
𝑄𝑝

𝛼𝑝𝐴𝜃𝑝
 𝑍3=

𝑑  which implies        𝐸[𝑄𝑝|𝐴] = 𝛼𝑝 𝐴𝜃𝑝  Equation 6-5 

MSQ Model: 
𝑄𝑝

𝛼𝑝𝑄̅𝜃𝑝
 𝑍4=

𝑑  which implies        𝐸[𝑄𝑝|𝐴] = 𝛼𝑝 𝑄̅𝜃𝑝 Equation 6-6 

where the  =
𝑑 symbol indicates equality in distribution with respect to the random variable Zi, 

which is assumed to be scale invariant, with expected value equal to 1, and independent from the 

explanatory variable. The model acronyms refer to SSA: Simple-Scaling with A; SSQ: Simple-

Scaling with 𝑄̅; MSA: Multi-Scaling with A; and MSQ: Multi-Scaling with 𝑄̅. 

The SSA and SSQ models evaluate the streamflow quantile relation with respect to A and 

𝑄̅ in a simple scaling framework, respectively, for which the 𝜃𝑝 is constant and equal to one. The 

MSA and MSQ models are the multi-scaling versions of the SSA and SSQ models, respectively, 

allowing changes in the 𝜃𝑝 across streamflow quantiles. The four proposed equations can be 

interpreted in the context of regional homogeneity of the streamflow distribution with respect to 

the explanatory variable. The A does not depend on climatic variability, so for this reason SSA 

and MSA models assume homogeneity in the streamflow distribution across the domain as 

defined by Gupta et al., 1995, in the context of peak flows. However, models SSQ and MSQ are 

based on the 𝑄̅ and include variability in the precipitation and evapotranspiration across the 

domain. Therefore, we can assume that these models better describe the non-homogeneous 

regional features in the representation of the streamflow distribution. 

I fit these models to observations using a WLS regression for values of p ranging from 

0.01 to 0.99 with a step of 0.001, for a total of 981 independent streamflow quantile regressions 
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per model. The WLS regression accounts for differences in the sample size caused by the 

differences in record periods in the streamflow gauges, but it does not compensate for cross-

correlation among the streamflow gauges. Future studies could include generalized least squares 

methods to account for streamflow dependence among sites in the development of the regression 

analysis. The use of independent regression can lead to the failure of the monotonic property of a 

FDC. However, the use of the same explanatory variable and a small step between the 

streamflow frequencies in the regressions make it unlikely that the monotonic property in the 

estimated FDC will fail. To enforce monotonicity, I connect the shape of the parameters 𝛼𝑝 and 

𝜃𝑝 as a function of the probability of exceedance (p) (see Section 6.3.4).  

I use the coefficient of determination (R2) as model selection criteria since the four 

models use a single explanatory variable and the log-transform of any of the four models makes 

them close to linear. In addition, the performance of each regression is evaluated with the Mean 

Average Percentage Error (MAPE), Symmetric Mean Percentage Error (SMAPE), and Mean 

Square Accuracy Ratio (MSAR). The MAPE is a common statistic used to measure the relative 

error in models; however, the MAPE is not symmetric because the interchange of 𝑄𝑝 and 𝑄𝑝̂ 

leads to different values in which 𝑄𝑝̂ is the estimated streamflow for a specific p based on the 

regression equation. This disadvantage is overcame by adding the symmetric version SMAPE to 

the analysis. Additionally, I included the MSAR statistic (Tofallis, 2015) to recognize the scale 

dependence in the models because it evaluates the differences in the logarithmic space, balancing 

the errors for small and large basins.  

𝑅2 = 1 −
∑ (𝑄𝑝𝑖

−𝑄𝑝̂)2𝑛
𝑖=1

∑ (𝑄𝑝𝑖
−𝑄𝑝̅̅ ̅̅ )2𝑛

𝑖=1

      Equation 6-7 
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𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑄𝑝𝑖
−𝑄𝑝̂

𝑄𝑝𝑖

|𝑛
𝑖=1       Equation 6-8 

𝑆𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑄𝑝𝑖
−𝑄𝑝̂|

(|𝑄𝑝𝑖
|+|𝑄𝑝̂|)/2

𝑛
𝑖=1      Equation 6-9 

𝑀𝑆𝐴𝑅 =
1

𝑛
∑ [𝑙𝑜𝑔 (

𝑄𝑝̂

𝑄𝑝𝑖

)]2𝑛
𝑖=1       Equation 6-10 

6.3.2. Assessment of the Explanatory Variables  

I begin by explaining the rationale for selecting A and 𝑄̅ as explanatory variables in the 

construction of a scale-invariant streamflow distribution for Iowa. Scale-invariance in the 

streamflow distribution requires that the explanatory variable captures the scale dependence of 

the 𝑄𝑝 throughout the spatial domain. In a homogeneous region, this scale dependence is 

captured by A alone (Gupta et al., 1995). However, in a non-homogeneous region, it is 

insufficient to explain the broad range of hydrologic variability (Farmer et al., 2015). In those 

cases, splitting the region into sub-regions and/or finding additional explanatory variables that 

explain the non-homogeneities are the preferred approaches. The variable 𝑄̅ includes both the 

scale dependence of A through Equation 6-2, as well as the regional variability in precipitation 

and evapotranspiration. For this reason, 𝑄̅ seems to be a better representation of the streamflow 

distribution with a scale-invariant property. 

To explore the characteristics of the A and the 𝑄̅ as explanatory variables in a scale-

invariant framework, I focused the analysis on the multi-scaling relationships expressed in the 

MSA and MSQ models. If the explanatory variable captures most of the streamflow variability 

across the domain, it would not be necessary to define the hydrologic regions. The regional 

dependence in the explanatory variable can be identified when clusters in the regression analysis 

are associated with specific regions in the domain of study. If a regional dependency exists, 
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regional domains should be delimited to perform a separate analysis that will capture the 

streamflow distribution in the region. The purpose of this study is to define a FDC for the entire 

domain of the state of Iowa; therefore, the definition of different hydrologic regions needs to be 

avoided. 

To test the scale-invariance of the MSA and MSQ models, possible hydrologic regions in 

the domain of study need to be identified. With the regions defined, I use a hypothesis test to 

determine whether the scaling parameters (𝛼𝑝 and 𝜃𝑝) for different regions differ significantly. 

The null hypothesis for the scaling exponent is 𝐻0: 𝜃𝑝
[𝑖]

= 𝜃𝑝
[𝑗]

; for the intercept it is 𝐻0: 𝛼𝑝
[𝑖]

=

𝛼𝑝
[𝑗]

; the index [i] or [j] refers to different regions. I tested the null hypothesis using the Potthoff 

method (Potthoff, 1966) to determine if there was a significant difference in the linear regression 

parameters when the data is separated into different groups (regions in this case) by performing a 

multi-linear regressions. To apply the Potthoff analysis, I transformed Equation 6-5 (for the 

MSA model) and Equation 6-6 (for the MSQ model) to linear equations expressed by  

𝑙𝑛(𝑄𝑝) = 𝑙𝑛 (𝛼𝑝
[𝑖]

) + 𝜃𝑝
[𝑖]

𝑙𝑛 (𝐴)     Equation 6-11 

𝑙𝑛(𝑄𝑝) = 𝑙𝑛 (𝛼𝑝
[𝑖]

) + 𝜃𝑝
[𝑖]

𝑙𝑛 (𝑄̅)     Equation 6-12 

Subsequently, we defined the linear expression  

𝑌[𝑖,𝑗] = 𝑎 + 𝑏𝑋[𝑖,𝑗] + 𝑐𝐺[𝑖] + 𝑑𝐺[𝑖]𝑋[𝑖,𝑗]    Equation 6-13 

and performed a multi-linear regression to estimate its coefficients. Here Y is the dependent 

variable for the regions i and j; X is the independent variable for the regions i and j; and G is the 

dichotomous grouping variable (dummy variable) with the coding one for the region i and zero 

for the region j. The dependent variable 𝑌[𝑖,𝑗] = ln (𝑄𝑝
[𝑖,𝑗]), and the independent variable 𝑋[𝑖,𝑗] =
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ln(𝑄̅[𝑖,𝑗]) for the approach with the mean annual flow, and 𝑋[𝑖,𝑗] = ln(𝐴[𝑖,𝑗]) for the approach 

with the drainage area. 

The coefficients a, b, c, and d in Equation 6-13 evaluate the difference in coefficients for 

Equation 6-11 (or Equation 6-12 for the mean annual flow) between the regions i and j. The 

coefficient a represents the intercept for the region i (ln (𝛼𝑝
[𝑖]

)); the coefficient b is the slope for 

the region i (𝜃𝑝
[𝑖]

); the coefficient c is the difference between the intercepts of the region i and j 

(ln (𝛼𝑝
[𝑖]

) − ln (𝛼𝑝
[𝑗]

)); and the coefficient d is the difference between the exponents of the region i 

and j (𝜃𝑝
[𝑖]

− 𝜃𝑝
[𝑗]

). 

Using this procedure, the p-value for each parameter in the multi-linear regression is 

estimated. The p-value is used to test the null hypothesis that the parameter is equal to zero. 

Therefore, the p-value for c and d in the multi-linear regression is testing the null hypothesis 

𝐻0: 𝜃𝑝
[𝑖]

= 𝜃𝑝
[𝑗]

 and 𝐻0: 𝛼𝑝
[𝑖]

= 𝛼𝑝
[𝑗]

, respectively. With a significance level of 5%, we can 

conclude that if the p-value is less than 0.05, the null hypothesis is rejected, concluding that the 

intercepts or scaling exponents are statistically different in both regions. But if the p-value is 

greater than 0.05, we cannot reject the null hypothesis and come to the conclusion that the 

intercepts or scaling exponents are probably the same in both regions. This test is key to 

determine if it is necessary to use more than one region to develop regional regressions for the 

proposed models.  

6.3.3. FDC Validation 

As a validation test, I calculated the MAPE, SMAPE, and MSAR to compare the FDCs 

estimated from the models SSA, SSQ, MSA, and MSQ with the observed FDC on 40 gauges. 



www.manaraa.com

 177  

These 40 gauges have streamflow records between 10 and 30 years and were not included in the 

set of the 74 gauges used for the construction of our four models. I did not include these 40 

gauges for the construction of the four models because the regressions for the monthly FDCs 

must have more than 30 years of records to guarantee at least 980 daily streamflow observations 

per month. Although these gauges do not have more than 30 years as the calibration streamflow 

gauges do, we could use them as a good proxy to evaluate the performance of our results with 

respect to the observed FDC and the standard method that the USGS developed for the state of 

Iowa using the web-platform tool StreamStats. For the models SSA and MSA the A is the 

drainage area reported by the USGS. For the models SSQ and MSQ the 𝑄̅ is estimated with the 

long-term water balance equation. 

6.3.4. FDC as a Piecewise Continuous Function 

To facilitate the potential practical use of FDCs using the SSA, SSQ, MSA, or MSQ 

models, I had to find a functional and continuous form to estimate the regression parameters (𝛼̂ 

and 𝜃) of these models as a continuous function of p. Because of the structure of 𝛼̂ and 𝜃 for 

low, normal, and high flows, I found that 𝜃 and the logarithm of 𝛼̂ can be described as a 

piecewise continuous function with respect to p as 

𝑙𝑛(𝛼̂) = 𝐴𝑝𝐵 + 𝐶       Equation 6-14 

𝜃 = 𝐴𝑝𝐵 + 𝐶        Equation 6-15 

I fitted Equations 6-14 and 6-15 into three intervals: High Flows (sub-index H) with p 

between 0.01 and 0.3; Normal Flows (sub-index N) with p between 0.3 and 0.9; and low flows 

(sub-index L) with p between 0.9 and 0.99. For instance, the Equations 6-16, 6-17, and 6-18 

show the relations for the three intervals of the logarithm of 𝛼̂ (similar procedure for 𝜃). The 
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break values of 0.3 and 0.9 on p for the definition of these intervals was based on a trial-and-

error process, to ensure a good fit.  

𝑙𝑛(𝛼𝐻̂) = 𝐴1𝑝𝐵1 + 𝐶1  for  𝑝 ∈ [0.01 0.3]    Equation 6-16 

𝑙𝑛(𝛼𝑁̂) = 𝐴2𝑝𝐵2 + 𝐶2  for   𝑝 ∈ [0.3 0.9]    Equation 6-17 

𝑙𝑛(𝛼𝐿̂) = 𝐴3𝑝𝐵3 + 𝐶3  for  𝑝 ∈ [0.9 0.99]    Equation 6-18 

An individual regression analysis for each range could be performed; however, the 

estimated parameters for each function do not guarantee continuity at the interval end points of p 

at 0.3 and 0.9. To overcome this problem, the piecewise function based on the three functions 

described above is necessary to enforce continuity. 

To enforce continuity at the interval end points, the conditions 𝐴10.3𝐵1 + 𝐶1 =

𝐴20.3𝐵2 + 𝐶2 and 𝐶2 = 𝐴10.3𝐵1 + 𝐶1 − 𝐴20.3𝐵2 is imposed. Thus, Equation 6-17 can be 

rewritten as 

𝑙𝑛(𝛼𝑁̂) = 𝐴2𝑝𝐵2 + 𝐴10.3𝐵1 + 𝐶1 − 𝐴20.3𝐵2     Equation 6-19 

Similarly, Equations 6-17 and 6-18 must preserve continuity at p equal to 0.9. This can be 

achieved by imposing the condition 𝐴20.9𝐵2 + 𝐶2 = 𝐴30.9𝐵3 + 𝐶3 and 𝐶3 = 𝐴20.9𝐵2 + 𝐶2 −

𝐴30.9𝐵3, and replacing 𝐶2, 𝐶3 = 𝐴20.9𝐵2 + 𝐴10.3𝐵1 + 𝐶1 − 𝐴20.3𝐵2 − 𝐴30.9𝐵3. As a result, 

Equation 6-18 can be rewritten as 

𝑙𝑛(𝛼𝐿̂) = 𝐴3𝑝𝐵3 + 𝐴20.9𝐵2 + 𝐴10.3𝐵1 + 𝐶1 − 𝐴20.3𝐵2 − 𝐴30.9𝐵3  Equation 6-20 

Now the logarithm of 𝛼̂ can be estimated as a piecewise continuous function with the 

simultaneous fit of Equations 6-16, 6-19, and 6-20 based on an OLS regression. I used the same 

procedure to fit the parameter 𝜃 in the three regions. 
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6.4. Results and Discussion 

Figure 6-3 shows the R2, MAPE, SMAPE, and MSAR for the 981 independent streamflow 

quantile regressions for the historical-annual FDC using the SSA, SSQ, MSA, and MSQ models. 

The model selection criteria R2 suggest that the models based on the 𝑄̅ (SSQ and MSQ) explain more the 

total variation of the streamflow quantiles than the models based on the A (SSA and MSA). Although the 

SSQ and MSQ models have similar values of R2, the MAPE, SMAPE, and MSAR display lower errors 

for the MSQ model than the SSQ model; hence we select the MSQ model as the best basis to construct 

the historical-annual FDC.  

In the four models, the streamflow estimations for low probabilities of exceedance (high flows) 

fit better in comparison with the streamflow with higher probabilities (low flows). Here, it is interesting to 

observe that the p of the 𝑄̅varies between 0.2 and 0.3 (See Table 6-1 and Table 6-2), which is close to the 

range where the regression models show better performance. However, moving away from this range 

toward high frequencies (low flows), the performance decreases. In general, the decreasing in 

performance for low flows can be attributed to the fact that A or 𝑄̅ do not fully capture the streamflow 

variability in this range of frequencies. I found similar results for the historical-monthly FDCs, which 

show a better performance for the MSQ model. Figure 6-4 shows the statistic for the historical-monthly 

FDCs using the MSQ model. The error metrics change from month to month. Based on the R2, the 

months with lower performance correspond to the winter season. Similarly, the other error metrics show 

that the months in fall show lower performance, with higher MAPE, SMAPE, and MSAR values for the 

months of September and October. Certainly, the MSQ model fits better than the other models explored 

in this study. Figure 6-5 shows the Mean Error and the Root Mean Square Error (RMSE) for the MSQ 

model for the historical-annual FDC and the 12 historical-monthly FDCs. 

The MSQ model works much better than the MSA model because the MSQ model is 

region independent in the domain of the state of Iowa, while the model MSA is regionally 
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dependent. For an example of this idea, we normalized the 𝑄𝑝 for the 981 quantiles with respect 

to its A or 𝑄̅ (see Figure 6-6, left panel). This plot allowed us to visualize the presence of 

regional dependence. A visual inspection grouping the data by 4-digit HUCs reveals spatial 

clusters between the normalized variable and the A. The right-hand panel in Figure 6-6 shows an 

example; I fixed p=0.1 and plotted the normalized variables against the A. Here I identified a 

clear regional dependency in 𝑄0.1/𝐴 by observing that most of the rescaled streamflow values for 

region 1 (black dots) were above 0.016; values for region 2 (gray squares) are between 0.011 and 

0.016; and values for region 3 are below 0.011. Note that these clusters are not evident in the 

𝑄0.1/𝑄̅ plot. Figure 6-7 shows the location of the three regions based on the clusters found in the 

relation 𝑄𝑝/𝐴 and A. Although the identification of these clusters is a function of the frequency 

evaluated and its delineation can be redefined with clustering techniques, we can be satisfied 

with the visual identification of the three regions shown in Figure 6-7 because they illustrate how 

𝑄𝑝/𝐴 depends on the region, while 𝑄𝑝/𝑄̅ does not. 

I used the procedure explained in Section 6.3.2 to evaluate whether the scaling 

parameters of the MSA and MSQ models were changing significantly in the three regions 

identified above. Figure 6-8 shows the results for the p-values that assess the null hypothesis 

related to the 𝜃𝑝 of the MSA and MSQ models for the historical-annual FDC. For the MSA 

model, we can observe that the paired regions 1-3 and 2-3 differ in the 𝜃𝑝, with p-values of less 

than 0.05 for low and high frequencies (p<0.1 and p>0.9). For the regions 1-2, I found p-values 

of less than 0.05 in probabilities of exceedance less than 0.1. On the other hand, the same 

analysis for 𝑄̅ as explanatory variable (MSQ model) indicated that for all the frequencies, the p-

value is greater than 0.05; therefore, we cannot reject the hypothesis that the 𝜃𝑝 is the same along 
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the three regions identified in Iowa. Figure 6-9 shows the same analysis for the 𝛼𝑝; here the p-

values for the MSA model in the regions 1-2 showed a wide range (0.2<p<0.7), with p-values of 

less than 0.05. The comparison for the sets of regions 1-3 and 2-3 shows p-values of less than 0.5 

in low and high frequencies; thus, we concluded that the 𝛼𝑝 are significantly different in these 

frequencies. On the other hand, the test for the 𝛼𝑝 using the 𝑄̅ as explanatory variable showed p-

values above 0.05 for the three sets of regions. Therefore, the hypothesis that the MSQ model is 

region independent cannot be rejected. In conclusion, the MSA model with the A as explanatory 

variable exhibited a significant regional dependency in Iowa. 

I replicated the hypothesis test for monthly scale FDCs, with a total of three pairs of 

regions, 12 months, and 981 quantiles. The results for the 𝛼𝑝 and 𝜃𝑝 are shown in Figure 6-10 

and Figure 6-11, respectively. The results show that there is not a significant signature of 

regional dependency when the 𝑄̅ is used as explanatory variable for the regression analysis at 

monthly scale. However, by looking at the results for the 𝛼𝑝 and 𝜃𝑝 for A, we can recognize large 

ranges for diverse months in which the p-value is less than 0.05. Hence, we can determine that 

the MSA model also presents a regional dependency at monthly scale, with a prevalence in low 

and high flows; the MSQ model does not exhibit such dependence. 

Regarding the validation test, Figure 6-12 shows the error metrics for quantile 

estimations at 40 streamflow gauges for the historical-annual FDCs using the four models 

explored in this study and the standard method obtained from StreamStats based on Linhart et 

al., 2012. The MAPE results show that the MSQ model performed best in estimating streamflow 

quantiles among the four proposed models. StreamStats outperforms the MSQ model in low 

streamflows. The MAPE results show that the MSQ model performs in a similar manner in the 
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range of frequencies from 0.01 to 0.6, and the MSAR indicates that the performance is 

comparable for the ranges 0.01 to 0.4. This result is consistent with the statistics shown in the 

regression analysis in which lower performances were obtained at low flows, with an increase in 

performance near the frequency range of 0.2 to 0.3. Of the four methods explored in this study, 

we observed that the MSQ model with multi-scaling approach and explanatory variable 𝑄̅ is the 

best option to replicate some quantiles of the FDC. I replicated the same validation test for FDC 

at monthly scales; however, in this case, it was not possible to compare the FDC with 

StreamStats results because the USGS method only provides estimates for the historical-annual 

FDC. Figure 6-13 shows the MAPE, SMAPE, and MSAR statistics at a monthly scale for the 

MSQ model. The results indicate that the historical-monthly FDC is well described in all the 

months with decreasing performance for low flows. The months of February, March, and April 

show a better model performance for most frequencies. On the other hand, the months with 

lower performance (July, August, and September) also show the largest errors over the range of 

low flows. These results show the variability in time (months) and frequency (percentage of time 

exceeded) in the model performance. 

With the MSQ model selected as the best model for the estimation of the historical-

annual and historical-monthly FDCs, I fit the 𝛼𝑝 and 𝜃𝑝 of the MSQ model to a piecewise 

continuous function with respect to the p. The results show that the sum of squared errors and the 

RMSE in these regressions are small (see Table 6-3). Therefore, the estimated scaling parameters 

(𝜃 and 𝛼̂) from the piecewise continuous function can be consider an accurate representation of 

𝜃𝑝 and 𝛼𝑝 (see Figure 6-14). I replicated this analysis at the monthly scale and again had the low 

sum of squared errors and RMSE (see Table 6-3), which allowed us to calculate piecewise 

continuous functions for the estimation of 𝜃 and 𝛼̂ for each month. I synthesized the final 
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historical-annual and historical-monthly FDCs based on these piecewise continuous functions as 

a set of equations for the three different ranges of p (see Table 6-4, Table 6-5, and Table 6-6). 

Based on the streamflow gauges used in this study, reasonable values of 𝑄̅ for the state of Iowa 

range from 0 to 200 m3/s. I verified the monotonic property of these piecewise continuous FDCs 

in the range of 𝑄̅ between 0 and 200 m3/s, checking the existence of negative derivatives on the 

final equation with respect to the probability of exceedance p. Then, we can confirm that the 

monotonic property emerges because of the small steps between frequencies in the streamflow 

regression, and because of the use of a single explanatory variable in the regression analysis. 

6.4.1. Scale Invariant FDC Application for the State of Iowa 

Figure 6-15 shows the historical-annual and historical-monthly FDCs estimated from the 

piecewise continuous functions for three different basins in the validation sites. These sites have drainage 

areas equal to 290 km2, 580 km2, and 2,079 km2. Figure 6-15 also shows the FDC from the streamflow 

observations and the FDC obtained with the StreamStats tool. The results confirm that the estimated 

historical-annual FDCs from the piecewise function match the observed FDC well. Figure 6-15 also 

shows the estimated streamflow quantiles from monthly FDCs and observed FDC for seven specific 

quantiles (0.99, 0.9, 0.75, 0.5, 0.25, 0.1, and 0.01). The graphs show the strong differences in streamflow 

distribution for different months, which are not captured by a historical-annual FDC. 

One of the main motivations to develop this study was the need to translate streamflow outputs 

from real-time hydrologic distributed models to streamflow frequencies to help the public interpret the 

hydrologic model flow estimates and predicted estimates. To demonstrate the applicability of these 

results, I used streamflow outputs from the distributed hydrologic model implemented by the IFC and 

classified these outputs into streamflow conditions along Iowa’s drainage network. In this case, I defined 

the following streamflow conditions: p<0.1 Near Bankfull; 0.1<p<0.25 High; 0.25<p<0.75 Normal; 

0.75<p<0.9 Low; and p>0.9 Very Low. Figure 6-16 shows the streamflow condition classification along 
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the drainage network for Sept. 20, 2016. Note that for the construction of this map, I used the set of 

equations in Tables 6-4, 6-5, and 6-6 for the month of September. GIS techniques were used to estimate 

the A for every site in the hydrologic model domain (Mantilla & Gupta, 2005). I estimated the mean 

annual flow with long-term water balance, again using the PRISM product for precipitation and 

evapotranspiration from a continuous global record of land surface evapotranspiration from 1983 to 2006. 

Overall, this example demonstrates the convenience of implementing this methodology into hydrologic 

distributed models that can be presented as regional maps. 

6.5. Conclusions 

The method presented in this chapter for estimating FDCs can be characterized as follows: 1) the 

FDC is described by a scale-invariant power law; 2) the power law are constructed using the multi-scaling 

framework, with variation in the scaling exponent and intercept across frequencies; 3) the FDC captures 

regional non-homogeneities in Iowa via the 𝑄̅, which captures changes in precipitation and 

evapotranspiration across the domain; 4) the FDC is region independent in the sense that we can 

implement the method anywhere in the state of Iowa; 5) we can calculate the FDC using a piecewise 

continuous function based on the 𝑄̅ and p; and 6) we can estimate the FDC for historical annual and 

monthly scales, which allows us to represent more accurately the seasonal variability in the streamflow 

distribution. 

The proposed methodology provides reasonable FDC estimates with respect to estimates from 

streamflow observations at historical annual and monthly scales. The historical-annual FDC comparison 

with respect to the FDC estimated with StreamStats shows that the proposed approach demonstrates a 

similar performance in streamflow quantiles for probabilities of exceedance less than 0.6. I found that the 

errors in our FDC estimations are larger for low flows with p>0.6, but well within the margin of error of 

many engineering applications. This methodology is valid for unregulated rivers within the state of Iowa, 

excluding the Mississippi River and Missouri River, which are heavily regulated. Reasonable values of 𝑄̅ 

for Iowa range from 0 to 200 m3/s across all watershed scales. 
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A few caveats on this analysis include the following. (1) The results of performance in the 

regression estimates for the calibration and the validation sets suggest that the variance in the estimates is 

higher in low flows, and the StreamStats methodology shows better performance at the annual scale for 

these low flows. (2) The proposed method uses the mean annual flow and therefore, the performance of 

the FDC estimation depends on the accuracy of its estimation. (3) Other basin characteristics or 

hydrological processes not captured by the mean annual flow drive the description of variability in low 

flow quantiles. This can be explained by noting that the mean annual flow has a probability of exceedance 

between 0.2 and 0.3; therefore, the information contained in 𝑄̅ in the representation of the streamflow 

distribution decreases toward frequencies closer to 1 (low flows). (4) The suitability to translate 

streamflow outputs from real-time hydrologic distributed models to streamflow frequencies relies on the 

performance of the hydrologic model to represent the observed streamflow distribution, since if the 

outputs of the hydrologic model are biased the streamflow classification based on the FDC will be biased 

as well.  

Although I developed this study for Iowa, this approach can easily be extended to other regions. 

This makes it an attractive technique for the classification of streamflow outputs from regional or national 

hydrologic distributed models to streamflow frequencies in order to create regional maps that can be 

easily used to interpret streamflow conditions at ungauged sites. 
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Table 6-1. Description of the 74 streamflow gauges used in the regression analysis in the SSA, 

SSQ, MSA, and MSQ models.  

USGS stream 

gauge number 

Drainage area 

USGS (km2) 

𝑷̅ 

(mm/year) 

𝑬𝑻̅̅ ̅̅  

(mm/year) 

𝑸̅ 

(m3/s) p for 𝑸̅ 

% Zero 

records 

Water 

years 

5387500 1323.5 885.9 617.5 11.3 0.22 0.00% 44 

5388250 1994.3 885.8 614.1 17.2 0.29 0.00% 40 

5411600 458.4 899.3 618.8 4.1 0.22 0.00% 35 

5412500 4001.5 911.0 618.9 37.1 0.20 0.00% 94 

5418500 4022.3 929.9 631.8 38.0 0.21 0.00% 101 

5421000 2714.3 915.1 617.9 25.6 0.21 0.00% 81 

5422000 6050.2 922.9 622.5 57.6 0.26 0.00% 80 

5422470 46.1 914.0 588.0 0.5 0.23 0.00% 31 

5449500 1111.1 846.4 610.4 8.3 0.22 0.00% 73 

5451500 3967.9 873.6 625.1 31.3 0.24 0.00% 96 

5451700 305.6 908.5 644.2 2.6 0.24 0.09% 65 

5451900 145.3 904.6 642.9 1.2 0.23 0.06% 65 

5452000 520.6 904.7 639.1 4.4 0.23 0.00% 69 

5452200 183.6 908.8 646.2 1.5 0.23 0.86% 65 

5453000 489.5 913.9 646.2 4.2 0.24 0.13% 69 

5453100 7236.4 888.6 634.7 58.3 0.29 0.00% 58 

5454000 65.5 930.5 636.7 0.6 0.19 5.27% 77 

5454300 254.1 924.2 635.7 2.3 0.22 0.08% 62 

5455100 520.6 930.9 648.2 4.7 0.20 0.00% 44 

5455500 1486.7 930.2 650.3 13.2 0.20 0.00% 75 

5457700 2729.8 870.5 596.6 23.7 0.24 0.00% 45 

5458000 792.5 886.8 615.4 6.8 0.19 0.00% 60 

5458500 4302.0 879.1 604.4 37.5 0.19 0.00% 94 

5459500 1362.3 859.1 609.5 10.8 0.22 0.00% 82 

5462000 4522.1 871.0 601.7 38.6 0.24 0.00% 61 

5463000 898.7 893.0 625.7 7.6 0.22 0.00% 69 

5463500 784.8 899.1 622.3 6.9 0.22 0.00% 56 

5464000 13328.1 879.6 609.9 114.0 0.25 0.00% 74 

5465000 20168.2 893.8 612.9 179.6 0.26 0.00% 75 

5470000 815.8 891.5 624.3 6.9 0.20 0.98% 88 

5470500 528.4 907.1 637.5 4.5 0.23 3.04% 57 

5471050 2079.8 903.8 636.2 17.6 0.28 0.00% 29 

5471200 714.8 906.3 638.4 6.1 0.26 0.00% 46 

5471500 4234.6 907.9 642.2 35.7 0.25 0.00% 69 

5472500 1890.7 923.5 658.2 15.9 0.23 0.00% 69 

5473400 1372.7 956.5 647.0 13.5 0.17 0.00% 37 

5474000 11168.0 927.8 648.5 98.9 0.22 0.00% 100 

5476750 5843.0 763.2 608.2 28.7 0.32 0.00% 50 

5479000 3387.7 810.5 602.5 22.3 0.24 0.00% 74 

5481000 2185.9 854.7 612.5 16.8 0.22 0.00% 74 
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Table 6-1 – Continued 

 

5481950 927.2 891.7 632.5 7.6 0.24 0.44% 54 

5482300 1813.0 831.9 599.4 13.4 0.22 0.03% 56 

5482500 4193.2 844.4 616.2 30.3 0.22 0.00% 74 

5483450 971.2 866.2 643.1 6.9 0.28 0.00% 35 

5484000 2574.4 880.5 654.1 18.5 0.20 0.00% 74 

5484500 8912.1 862.8 632.2 65.2 0.20 0.00% 99 

5484800 203.1 899.1 545.0 2.3 0.21 0.46% 43 

5485640 240.1 905.7 584.7 2.4 0.24 0.61% 43 

5486000 903.9 895.2 681.1 6.1 0.22 0.38% 74 

5486490 1267.5 901.9 678.2 9.0 0.20 0.00% 74 

5487470 1191.4 923.8 659.0 10.0 0.13 0.09% 74 

5487980 862.5 940.0 660.1 7.7 0.15 0.00% 52 

5488200 233.4 930.0 666.7 1.9 0.15 0.30% 29 

5489000 968.7 948.9 650.2 9.2 0.12 0.08% 67 

5494300 227.1 978.6 689.8 2.1 0.11 0.28% 33 

6483500 4123.3 723.8 620.5 13.5 0.26 0.16% 66 

6600000 168.6 714.0 629.9 0.4 0.28 0.39% 47 

6600100 694.1 753.1 618.6 3.0 0.22 0.34% 59 

6600500 2294.7 736.1 619.2 8.5 0.22 0.00% 79 

6605000 1103.3 752.3 619.5 4.6 0.35 0.44% 37 

6605850 4009.3 763.9 622.5 18.0 0.33 0.00% 42 

6606600 6475.0 770.3 628.2 29.2 0.26 0.00% 87 

6607200 1732.7 802.8 634.8 9.2 0.25 0.01% 73 

6607500 9132.3 801.9 637.8 47.5 0.23 2.74% 71 

6608500 1054.1 798.0 650.6 4.9 0.23 0.00% 74 

6609500 2255.9 821.9 642.9 12.8 0.21 0.01% 82 

6807410 1577.3 847.7 646.1 10.1 0.27 0.00% 55 

6808500 3434.3 858.3 648.9 22.8 0.24 0.00% 66 

6809210 1129.2 878.0 657.6 7.9 0.25 0.00% 54 

6809500 2315.4 881.5 659.8 16.3 0.20 0.00% 84 

6810000 7267.5 870.9 654.7 49.8 0.21 0.00% 87 

6898000 1815.6 920.0 684.9 13.5 0.16 0.00% 79 

6903400 471.4 955.1 680.5 4.1 0.14 1.34% 49 

6903700 435.1 970.6 702.1 3.7 0.13 0.11% 47 
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Table 6-2. Description of the 40 streamflow gauges used in the validation analysis.  

USGS stream 

gauge number 

Drainage area 

USGS (km2) 

𝑷̅ 

(mm/year) 

𝑬𝑻̅̅ ̅̅  

(mm/year) 

𝑸̅ 

(m3/s) p for 𝑸̅ 

% Zero 

records 

Water 

years 

5387440 950.5 884.7 613.7 8.2 0.33 0.00% 12 

5388000 1471.1 882.2 613.4 12.5 0.17 0.00% 26 

5388500 110.9 884.4 638.1 0.9 0.06 0.00% 21 

5389400 88.4 879.0 619.0 0.7 0.24 0.00% 23 

5411400 71.5 879.1 594.5 0.6 0.26 0.00% 10 

5411850 1660.2 901.7 624.7 14.6 0.26 0.00% 14 

5412000 2307.7 894.1 619.8 20.1 0.16 0.00% 10 

5412020 2338.8 893.7 619.7 20.3 0.28 0.00% 13 

5412400 901.3 899.5 565.1 9.6 0.22 0.00% 15 

5416900 712.2 932.2 599.7 7.5 0.28 0.00% 13 

5417700 158.8 916.3 614.5 1.5 0.19 0.00% 19 

5418400 1307.9 912.9 633.8 11.6 0.32 0.00% 16 

5418450 1336.4 911.5 632.4 11.8 0.18 0.00% 14 

5420680 896.1 921.6 631.8 8.2 0.25 0.00% 14 

5421740 4079.2 953.4 654.0 38.7 0.30 0.00% 12 

5422560 41.7 918.2 627.0 0.4 0.25 0.00% 20 

5422600 148.4 911.2 509.1 1.9 0.17 0.00% 20 

5448500 290.1 844.6 625.2 2.0 0.09 0.00% 10 

5451210 580.2 888.5 641.8 4.5 0.27 0.00% 18 

5452500 6358.4 900.1 647.8 50.9 0.18 0.00% 20 

5454220 151.3 919.7 642.1 1.3 0.27 0.00% 20 

5460500 3413.6 887.8 617.3 29.3 0.18 0.00% 11 

5464220 774.4 907.8 636.7 6.7 0.27 0.00% 15 

5464640 461.0 910.0 642.2 3.9 0.23 0.15% 16 

5471040 47.7 908.7 662.6 0.4 0.26 0.00% 10 

5473450 150.2 948.5 650.6 1.4 0.20 0.41% 17 

5478000 1196.6 805.6 622.2 7.0 0.15 0.46% 23 

5482135 603.5 840.2 616.1 4.3 0.32 0.00% 13 

5484650 9140.1 905.2 674.4 66.9 0.29 0.00% 18 

5485605 160.6 901.8 628.1 1.4 0.32 0.00% 11 

5487540 17.6 909.8 663.7 0.1 0.28 0.37% 10 

5487550 52.6 912.4 633.9 0.5 0.20 0.00% 11 

5488000 984.2 908.8 630.9 8.7 0.12 0.00% 17 

5494500 417.0 963.3 670.7 3.9 0.10 0.30% 11 

6483270 2040.9 714.8 616.3 6.4 0.12 0.00% 15 

6483290 2209.3 714.7 615.6 6.9 0.39 0.00% 13 

6605600 3455.0 793.7 655.9 15.1 0.18 0.00% 15 

6607000 101.8 798.6 631.1 0.5 0.19 0.00% 18 

6808000 27.5 866.6 638.0 0.2 0.09 0.11% 15 

6818750 562.0 914.9 711.8 3.6 0.17 0.01% 23 
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Table 6-3. Measurements of errors in the fit of the piecewise continuous function of  𝜃 and 𝛼. 

SSE: sum of squared errors. RMSE: root-mean-square error 

  𝜃 𝛼 

Period SSE RMSE SSE RMSE 

Jan 4.929 0.07 0.175 0.013 

Feb 1.39 0.037 0.036 0.006 

Mar 2.364 0.049 0.04 0.006 

Apr 1.185 0.035 0.023 0.005 

May 1.492 0.039 0.023 0.005 

Jun 1.548 0.039 0.037 0.006 

Jul 2.96 0.055 0.039 0.006 

Aug 3.76 0.062 0.104 0.01 

Sep 3.619 0.06 0.113 0.011 

Oct 3.687 0.061 0.064 0.008 

Nov 0.557 0.024 0.133 0.012 

Dec 1.036 0.032 0.072 0.009 

Historic 1.038 0.032 0.042 0.006 
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Table 6-4, Table 6-5, and Table 6-6 are the fitted equations for the piecewise continuous FDC. Because of 

the long decimal precision, these equations are not completely continuous in the quantiles 0.3 and 0.9; 

however, the error caused by the decimal precision presented in the below tables is less than 2%.  

 

Table 6-4. FDC for the Range of High Flows 𝑄𝑝 (𝑚3/𝑠):  𝑝 ∈ 0[0.01, 0.3] 𝑤𝑖𝑡ℎ 𝑄̅ 𝑖𝑛 𝑚3/𝑠 

Annual 𝑄𝑝 = (𝑒−8.2874𝑝0.17448+6.2045)𝑄̅(−0.033369𝑝−0.44814+1.1032) 

Jan 𝑄𝑝 = (𝑒−7.2464𝑝0.1385+4.9096)𝑄̅(−0.02314𝑝−0.42977+1.0296) 

Feb 𝑄𝑝 = (𝑒−9.5577𝑝0.14276+7.3535)𝑄̅(−0.23795𝑝−0.16362+1.2533) 

Mar 𝑄𝑝 = (𝑒−6.8543𝑝0.27272+4.9471)𝑄̅(−2.3482𝑝−0.031583+3.4959) 

Apr 𝑄𝑝 = (𝑒−6.1301𝑝0.20205+5.000)𝑄̅(−0.1064𝑝−0.23894+1.1936) 

May 𝑄𝑝 = (𝑒−6.841𝑝0.18141+5.7478)𝑄̅(−0.11855𝑝−0.26169+1.1892) 

Jun 𝑄𝑝 = (𝑒−8.451𝑝0.16674+7.0607)𝑄̅(−0.19006𝑝−0.22559+1.3257) 

Jul 𝑄𝑝 = (𝑒−9.1678𝑝0.17473+6.8023)𝑄̅(−8.7076𝑝−0.009692+9.9458) 

Aug 𝑄𝑝 = (𝑒−10.421𝑝0.17116+7.0758)𝑄̅(0.95518𝑝0.13605+0.34082) 

Sep 𝑄𝑝 = (𝑒−7.982𝑝0.29306+4.0195)𝑄̅(0.54661𝑝0.32954+0.77356) 

Oct 𝑄𝑝 = (𝑒−6.402𝑝0.33205+3.0477)𝑄̅(0.45314𝑝0.27173+0.77025) 

Nov 𝑄𝑝 = (𝑒−5.3556𝑝0.2415+3.1321)𝑄̅(−0.056636𝑝−0.27264+1.0983) 

Dec 𝑄𝑝 = (𝑒−5.2069𝑝0.22562+2.9578)𝑄̅(−0.11892𝑝−0.18339+1.1418) 
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Table 6-5. FDC for the Range of Normal Flows 𝑄𝑝 (𝑚3/𝑠):  𝑝 ∈ [0.3, 0.9] 𝑤𝑖𝑡ℎ 𝑄̅ 𝑖𝑛 𝑚3/𝑠  

Annual 𝑄𝑝 = (𝑒−4.681𝑝1.8189+0.011191)𝑄̅(0.41077𝑝2.8303+1.0324) 

Jan 𝑄𝑝 = (𝑒−4.4163𝑝1.8954−0.77303)𝑄̅(0.46338𝑝2.4184+0.9656) 

Feb 𝑄𝑝 = (𝑒−4.267𝑝2.0548−0.33528)𝑄̅(0.41219𝑝3.642+0.95836) 

Mar 𝑄𝑝 = (𝑒−3.3558𝑝1.9773+0.3218)𝑄̅(0.12431𝑝4.7135+1.0563) 

Apr 𝑄𝑝 = (𝑒−3.2572𝑝1.8738+0.53492)𝑄̅(0.15369𝑝3.4107+1.0492) 

May 𝑄𝑝 = (𝑒−3.3821𝑝2.0642+0.5307)𝑄̅(0.17573𝑝2.3192+1.0159) 

Jun 𝑄𝑝 = (𝑒−3.7196𝑝1.9925+0.48461)𝑄̅(0.22026𝑝2.1528+1.0598) 

Jul 𝑄𝑝 = (𝑒−3.8816𝑝2.0222−0.28611)𝑄̅(0.32633𝑝3.0773+1.1279) 

Aug 𝑄𝑝 = (𝑒−3.9659𝑝1.361−0.96985)𝑄̅(0.44026𝑝2.0457+1.1142) 

Sep 𝑄𝑝 = (𝑒−4.6853𝑝1.3536−0.67115)𝑄̅(0.6086𝑝1.2049+0.99847) 

Oct 𝑄𝑝 = (𝑒−5.1126𝑝1.2704−0.13713)𝑄̅(0.54816𝑝1.7235+1.028) 

Nov 𝑄𝑝 = (𝑒−4.6008𝑝1.293+0.09765)𝑄̅(0.49555𝑝1.0543+0.8803) 

Dec 𝑄𝑝 = (𝑒−4.5552𝑝1.7252−0.43975)𝑄̅(0.46776𝑝1.7962+0.9397) 
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Table 6-6. FDC for the Range of Low Flows 𝑄𝑝(𝑚3/𝑠):  𝑝 ∈ [0.9, 0.99] 𝑤𝑖𝑡ℎ 𝑄̅ 𝑖𝑛 𝑚3/𝑠  

Annual 𝑄𝑝 = (𝑒−3.7633𝑝13.776−2.972)𝑄̅(0.45486𝑝17.36+1.2642) 

Jan 𝑄𝑝 = (𝑒−4.8963𝑝10.107−2.7018)𝑄̅(0.69032𝑝10.198+1.0891) 

Feb 𝑄𝑝 = (𝑒−4.0703𝑝21.932−3.3679)𝑄̅(0.63714𝑝36.682+1.2258) 

Mar 𝑄𝑝 = (𝑒−3.0216𝑝12.189−1.5684)𝑄̅(0.30487𝑝33.91+1.1234) 

Apr 𝑄𝑝 = (𝑒−2.9957𝑝12.879−1.3675)𝑄̅(0.33232𝑝45.799+1.1538) 

May 𝑄𝑝 = (𝑒−3.3561𝑝11.587−1.2003)𝑄̅(0.26413𝑝29.894+1.1423) 

Jun 𝑄𝑝 = (𝑒−4.1585𝑝26.324−2.2709)𝑄̅(0.67024𝑝53.786+1.2331) 

Jul 𝑄𝑝 = (𝑒−4.4844𝑝11.566−2.097)𝑄̅(0.53367𝑝14.263+1.2452) 

Aug 𝑄𝑝 = (𝑒−3.6738𝑝10.155−2.978)𝑄̅(0.40043𝑝8.6684+1.3084) 

Sep 𝑄𝑝 = (𝑒−3.3683𝑝18.422−4.2501)𝑄̅(0.56343𝑝40.483+1.5266) 

Oct 𝑄𝑝 = (𝑒−3.2238𝑝11.477−3.6471)𝑄̅(0.33409𝑝17.549+1.4327) 

Nov 𝑄𝑝 = (𝑒−2.6267𝑝18.00−3.5229)𝑄̅(0.32068𝑝27.14+1.3054) 

Dec 𝑄𝑝 = (𝑒−3.5668𝑝11.401−3.1648)𝑄̅(0.47741𝑝11.517+1.185) 
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Figure 6-1. USGS classification of daily streamflow conditions for the United States and the state of Iowa on Sept. 20, 2016. 
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Figure 6-2. Location of the streamflow gauges in Iowa. The green triangles are the USGS gauges used 

for the model development. The red triangles are the USGS gauges used for the validation test. 
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Figure 6-3. Statistics R2, MAPE, SMAPE, and MSAR for quantiles ranging from 0.01 to 0.99 for 

the four models describing the historical FDC. 
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Figure 6-4. Statistics R2, MAPE, SMAPE, and MSAR for quantiles ranging from 0.01 to 0.99 for 

the MSQ model describing the monthly FDCs. Winter months (DJF) are shown in blue, spring 

months (MAM) in red, summer months (JJA) in green, and fall months (SON) in black. 
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Figure 6-5. Mean Error and RMSE for quantiles ranging from 0.01 to 0.99 for the MSQ model 

describing the annual and monthly FDCs. Annual result is shown in gray. Winter months (DJF) 

are shown in blue, spring months (MAM) in red, summer months (JJA) in green, and fall months 

(SON) in black. 
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Figure 6-6. Streamflow quantiles normalized with respect to A and 𝑄̅ for the 74 streamflow 

gauges used for the model development; the red lines represent the percentile 5 and 95 (left 

panel). Normalized streamflow with p equal to 0.1 associated to three regions in the state of Iowa 

(right panel). 
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Figure 6-7. Definition of the three regions detected in the relation 𝑄𝑝/𝐴 and A. The green triangles are 

the USGS gauges used for the model development. 
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Figure 6-8. This figure illustrates the p-value for testing of the null hypothesis 𝐻0: 𝜃𝑝,𝑅𝑒𝑔𝑖𝑜𝑛 𝑖
[𝑀𝑆𝐴]

=

𝜃𝑝,𝑅𝑒𝑔𝑖𝑜𝑛 𝑗
[𝑀𝑆𝐴]

 and 𝐻0: 𝜃𝑝,𝑅𝑒𝑔𝑖𝑜𝑛 𝑖
[𝑀𝑆𝑄]

= 𝜃𝑝,𝑅𝑒𝑔𝑖𝑜𝑛 𝑗
[𝑀𝑆𝑄]

 in the historical FDC with quantiles ranging from 

0.01 to 0.99. 
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Figure 6-9. This figure illustrates the p-value for testing of the null hypothesis 𝐻0: 𝛼𝑝,𝑅𝑒𝑔𝑖𝑜𝑛 𝑖
[𝑀𝑆𝐴]

=

𝛼𝑝,𝑅𝑒𝑔𝑖𝑜𝑛 𝑗
[𝑀𝑆𝐴]

 and 𝐻0: 𝛼𝑝,𝑅𝑒𝑔𝑖𝑜𝑛 𝑖
[𝑀𝑆𝑄]

= 𝛼𝑝,𝑅𝑒𝑔𝑖𝑜𝑛 𝑗
[𝑀𝑆𝑄]

 in the historical FDC with quantiles ranging from 

0.01 to 0.99. 
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Figure 6-10. This figure illustrates the p-value for the null hypothesis 𝐻0: 𝛼𝑝,𝑅𝑒𝑔𝑖𝑜𝑛 𝑖
[𝑀𝑆𝐴]

=

𝛼𝑝,𝑅𝑒𝑔𝑖𝑜𝑛 𝑗
[𝑀𝑆𝐴]

 and 𝐻0: 𝛼𝑝,𝑅𝑒𝑔𝑖𝑜𝑛 𝑖
[𝑀𝑆𝑄]

= 𝛼𝑝,𝑅𝑒𝑔𝑖𝑜𝑛 𝑗
[𝑀𝑆𝑄]

 at monthly scale with quantiles ranging from 0.01 to 

0.99. 
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Figure 6-11. This figure illustrates the p-value for the null hypothesis 𝐻0: 𝜃𝑝,𝑅𝑒𝑔𝑖𝑜𝑛 𝑖
[𝑀𝑆𝐴]

= 𝜃𝑝,𝑅𝑒𝑔𝑖𝑜𝑛 𝑗
[𝑀𝑆𝐴]

 

and 𝐻0: 𝜃𝑝,𝑅𝑒𝑔𝑖𝑜𝑛 𝑖
[𝑀𝑆𝑄]

= 𝜃𝑝,𝑅𝑒𝑔𝑖𝑜𝑛 𝑗
[𝑀𝑆𝑄]

 at monthly scale with quantiles ranging from 0.01 to 0.99. 
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Figure 6-12. Statistics MAPE, SMAPE, and MSAR using the 42 validation gauges at historical 

annual scale and quantiles ranging from 0.01 to 0.99 for the four models and the StreamStats 

results. 
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Figure 6-13. Statistics MAPE, SMAPE, and MSAR for the 42 validation gauges at monthly scale 

and quantiles ranging from 0.01 to 0.99 for the MSQ model. 
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Figure 6-14. Piecewise continuous function for 𝜃 and 𝑙𝑛(𝛼̂) at annual scale for quantiles ranging 

from 0.01 to 0.99 over the MSQ model. The shaded region represents the 95% confidence 

intervals from the independent regression analysis performed in each of the 981 streamflow 

quantiles. 
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Figure 6-15. Estimation of the FDC for three validations sites based on the fitted piecewise 

continuous function for MSQ model. The left figure shows the proposed FDC (MSQ model), the 

StreamStats FDC, and the observed historical FDC. The right figure shows the monthly FDC for 

the quantiles of 0.99, 0.9, 0.75, 0.5, 0.25, 0.1, and 0.01. The continuous lines are the estimation 

from the monthly piecewise continuous function using the MSQ model, and the cross points are 

the data from the observed FDC. 
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Figure 6-16. An example of translating streamflow magnitudes to streamflow conditions in Iowa 

on Sept. 20, 2016. 
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CHAPTER 7: FINAL REMARKS AND FUTURE DIRECTIONS 

This dissertation was inspired by multiple works that contributed to the development of a scaling 

theory of floods. The adoption of a scaling model (𝑄 = 𝛼𝐴𝜃) to represent the variability of peak 

flows across scales is not only because this structure seems to reflect a fundamental symmetry of 

nature, but also because it provides a simple and reliable framework supported by empirical and 

experimental analysis for hypothesis testing of physical mechanisms behind peak flow 

variabilities. An engaging description of the outlines and future directions of this theory is 

provided by Gupta et al., (2007). However, it has been more than 10 years since this overview 

was reported. Therefore, we recognize the need to review and bring together =new advances in 

the scaling theory of floods. Mainly, these recent advances focus on the interpretation of scaling 

parameters with respect to rainfall properties and geomorphologic attributes (e.g., Ayalew et al., 

2015; Ayalew et al., 2014a; Ayalew et al., 2014b; Gupta et al., 2015; Mandapaka et al., 2009; 

Mantilla et al., 2011; Mantilla, 2012). However, little attention was devoted to understanding the 

interplay of sampling errors/epistemic errors with respect to this scaling theory, which is 

essential if this theory is to be adopted as a feasible alternative for real engineering applications 

to estimate peak flow quantiles. We believe this dissertation contributes to this greater 

understanding, starting with the regional analysis of scaling parameter at different spatial scales 

(Chapter 2); definition of river network descriptors (Chapter 3); inclusion of river network 

descriptor to improve the peak flow scaling (Chapters 3 and 4); and evaluation of sampling 

errors and different model structures in the estimation of peak flows (Chapters 4 and 5). 

Nevertheless, a long but promising path remains if we are to refine this scaling theory of floods 

to serve as a solid framework to predict peak flows at ungauged sites that have experienced 

dramatic changes in land use or climate. 
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The overall hypothesis presented in “The Scaling Theory of Floods” is that scaling in peak flows 

emerges from the physical mechanisms involved in rainfall-runoff generation and the river 

network directing flow toward the outlet. The work performed here provides meaningful 

guidance to develop physics-informed methodologies to estimate peak flow quantiles at 

ungauged sites, and it shows that the theory can be extended to all flows in the river. Based on 

the various findings in this dissertation, I assert five future directions for continued progress 

toward an improved scaling theory of floods.  

(1) I demonstrated that the Width Function Descriptors can explain part of the regional peak 

flow variability (see Chapters 3 and 4). This result opens an avenue to evaluate whether 

the inclusion of these descriptors improves the regional peak flow equations estimated in 

the USGS’ official flood frequency equations (Eng. et al., 2009). Subsequent studies must 

evaluate whether the standard regional regression analysis presented by the USGS is 

improved by the inclusion of WFDs. 

(2)  The Scaling Theory of Floods is evaluated based on the conventional regression 

techniques such as Ordinary Least Squares. However, more sophisticated and appropriate 

techniques such as Generalized Least Squares must be implemented in order to consider 

the correlation between concurrent peak flow observations. In the same way, the scaling 

theory must be also compared with spatial techniques that take advantage of the peak 

flow dependencies between sites, such as topological kriging or canonical kriging. 

(3) The findings in Chapters 3 and 4 are tied to inner variabilities of river network structures 

in Iowa. Hence, a broader analysis with different geomorphologic variabilities (e.g., 

mountain regions) must be performed to validate and expand the application of Width 

Function Descriptors as an explanatory variable for regional regression analysis. 
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(4) The findings in Chapters 3, 4, and 5 focused on the evaluation of natural variabilities (by 

means of width function descriptors) and stochastic variabilities (by means of sampling 

error) of regional peak flow structures. However, other natural variabilities, such as 

antecedent soil moisture, rainfall structure, soil cover, and channel network geometry, 

can dominate a region’s peak flow variability. Therefore, we recognize the need to 

perform numerical simulations to evaluate the combined interplay of these processes in 

order to dissect their contributions to regional peak flow variability. 

(5) The physical principles behind the scaling theory of floods are not unique to extreme 

events. This fact is detailed in Chapter 6 with the use of the scaling theory in the 

estimation of Flow Duration Curves. This result opens new avenues to explore whether 

Width Function Descriptors can improve the estimation of Flow Duration Curves, just as 

they do in peak flows. 
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APPENDIX 

Descriptors for the geometric WF using ∆𝑥 = 1 𝑘𝑚 

𝑊𝑚𝑎𝑥 = 𝑚𝑎𝑥 (𝑊(𝑥))        A1 

𝐷(𝑊𝑚𝑎𝑥)  = 𝐷(𝑥), 𝑤𝑖𝑡ℎ 𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚𝑎𝑥 (𝑊(𝑥))     A2 

𝐷𝐵 = 𝑚𝑎𝑥 (𝐷(𝐶𝐿))         A3 

𝑀 = ∑ 𝑊(𝑑) ∙ ∆𝑥
𝐷𝐵
𝑑=1 = ∑ 𝑊(𝑑)𝐷𝐵

𝑑=1 = 𝑇𝐿      A4 

𝑑̅ =
∑ 𝑑∙∆𝑥∙𝑊(𝑑)

𝐷𝐵
𝑑=1

∑ ∆𝑥∙𝑊(𝑑)
𝐷𝐵
𝑑=1

=
∑ 𝑑∙𝑊(𝑑)

𝐷𝐵
𝑑=1

∑ 𝑊(𝑑)
𝐷𝐵
𝑑=1

       A5 

𝑊̅ =
∑

1

2
𝑊(𝑑)∙∆𝑥∙𝑊(𝑑)

𝐷𝐵
𝑑=1

∑ ∆𝑥∙𝑊(𝑑)
𝐷𝐵
𝑑=1

=
∑ 𝑊(𝑑)2𝐷𝐵

𝑑=1

2 ∑ 𝑊(𝑑)
𝐷𝐵
𝑑=1

       A6 

𝑉𝑊 = 2𝜋 ∑ 𝑑 ∙ 𝑊(𝑑) ∙ ∆𝑥
𝐷𝐵
𝑑=1 = 2𝜋 ∑ 𝑑 ∙ 𝑊(𝑑)𝐷𝐵

𝑑=1      A7 

𝑀[0,𝐷(𝑊𝑚𝑎𝑥)] = ∑ 𝑊(𝑑) ∙ ∆𝑥
𝐷(𝑊𝑚𝑎𝑥)
𝑑=1 = ∑ 𝑊(𝑑)𝐷(𝑊𝑚𝑎𝑥)

𝑑=1     A8 

𝑀[𝐷(𝑊𝑚𝑎𝑥),𝐷𝐵] = ∑ 𝑊(𝑑) ∙ ∆𝑥
𝐷𝐵
𝑑=𝐷(𝑊𝑚𝑎𝑥) = ∑ 𝑊(𝑑)𝐷𝐵

𝑑=𝐷(𝑊𝑚𝑎𝑥)    A9 

𝑇𝐷 =
𝑇𝐿

𝐷𝐵
           A10 

𝑀𝑊𝐷 = 𝑊𝑚𝑎𝑥 ∙ 𝐷(𝑊𝑚𝑎𝑥)         A11 

𝑀𝑊𝐷̅̅ ̅̅ ̅ = 𝑊̅ ∙ 𝑑̅          A12 
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Descriptors for the WF-at-site 

𝐷[𝑁]̅̅ ̅̅ ̅̅ =
1

𝑇𝐿
∑ 𝐷[𝑁](𝐶𝐿)

𝑇𝐿
𝐶𝐿=1         A13 

𝑉𝑎𝑟(𝐷[𝑁]) =
1

𝑇𝐿−1
∑ (𝐷[𝑁](𝐶𝐿) − 𝐷[𝑁]̅̅ ̅̅ ̅̅ )2𝑇𝐿

𝐶𝐿=1      A14 

𝑆𝑘(𝐷[𝑁]) =

1

𝑇𝐿
∑ (𝐷[𝑁](𝐶𝐿)−𝐷[𝑁]̅̅ ̅̅ ̅̅ )3𝑇𝐿

𝐶𝐿=1

(√
1

𝑇𝐿
∑ (𝐷[𝑁](𝐶𝐿)−𝐷[𝑁]̅̅ ̅̅ ̅̅ )2𝑇𝐿

𝐶𝐿=1 )3
      A15 

𝐾(𝐷[𝑁]) =

1

𝑇𝐿
∑ (𝐷[𝑁](𝐶𝐿)−𝐷[𝑁]̅̅ ̅̅ ̅̅ )4𝑇𝐿

𝐶𝐿=1

(
1

𝑇𝐿
∑ (𝐷[𝑁](𝐶𝐿)−𝐷[𝑁]̅̅ ̅̅ ̅̅ )2𝑇𝐿

𝐶𝐿=1 )2
       A16 

𝑞25(𝐷[𝑁])  such as Pr[𝐷[𝑁] ≤ 𝑞25(𝐷[𝑁])  ] = 0.25      A17 

𝑞50(𝐷[𝑁])  such as Pr[𝐷[𝑁] ≤ 𝑞50(𝐷[𝑁])  ] = 0.50     A18 

𝑞75(𝐷[𝑁])  such as Pr[𝐷[𝑁] ≤ 𝑞75(𝐷[𝑁])  ] = 0.75     A19 

𝐷𝑊𝑚𝑎𝑥

[𝑁]
=

𝐷(𝑊𝑚𝑎𝑥)

 𝐷𝐵
         A20 

𝑀
[0,𝐷𝑊𝑚𝑎𝑥

[𝑁]
]

[𝑁]
=

𝑀[0,𝐷(𝑊𝑚𝑎𝑥)]

𝑀
        A21 

𝑀
[𝐷𝑊𝑚𝑎𝑥

[𝑁]
,1]

[𝑁]
=

𝑀[𝐷(𝑊𝑚𝑎𝑥),1]

𝑀
= 1 − 𝑀

[0,𝐷𝑊𝑚𝑎𝑥

[𝑁]
]

[𝑁]
      A22 
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Descriptors for the WF-at-region using ∆𝑥 = 1 𝑘𝑚 

𝑊𝑚𝑎𝑥
[𝑁𝑆] = 𝑚𝑎𝑥 (𝑊

[𝑁𝑆]
(𝑥))         A23 

𝐷(𝑊𝑚𝑎𝑥
[𝑁𝑆]) = 𝐷[𝑁𝑆](𝑥), 𝑤𝑖𝑡ℎ 𝑥 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑚𝑎𝑥 (𝑊[𝑁𝑆](𝑥))      A24 

𝐴𝑟 =
𝐸[𝐷𝐵]∙𝐸[𝑊̅]

𝑀
           A25 

𝐷𝐵
[𝑁𝑆] = 𝐷𝐵

𝐸[𝐷𝐵]
            A26 

𝑀[𝑁𝑆] = ∑ 𝑊[𝑁𝑆](𝑑) ∙
∆𝑥

𝐷𝐵

𝐷𝐵
[𝑁𝑆]

𝑑=1/𝐷𝐵
=

1

𝐷𝐵
∑ 𝑊(𝑑)

𝐷𝐵
[𝑁𝑆]

𝑑=1/𝐷𝐵
     A27 

𝑑[𝑁𝑆]̅̅ ̅̅ ̅̅ =
∑ 𝑑∙

∆𝑥

𝐷𝐵
∙𝑊[𝑁𝑆](𝑑)

𝐷𝐵
[𝑁𝑆]

𝑑=1/𝐷𝐵

∑
∆𝑥

𝐷𝐵
∙𝑊[𝑁𝑆](𝑑)

𝐷𝐵
[𝑁𝑆]

𝑑=1/𝐷𝐵

=
∑ 𝑑∙𝑊[𝑁𝑆](𝑑)

𝐷𝐵
[𝑁𝑆]

𝑑=1/𝐷𝐵

∑ 𝑊[𝑁𝑆](𝑑)
𝐷𝐵

[𝑁𝑆]

𝑑=1/𝐷𝐵

      A28 

𝑊[𝑁𝑆]̅̅ ̅̅ ̅̅ ̅̅ =
∑

1

2
𝑊[𝑁𝑆](𝑑)∙

∆𝑥

𝐷𝐵
∙𝑊[𝑁𝑆](𝑑)

𝐷𝐵
[𝑁𝑆]

𝑑=1/𝐷𝐵

∑
∆𝑥

𝐷𝐵
∙𝑊[𝑁𝑆](𝑑)

𝐷𝐵
[𝑁𝑆]

𝑑=1/𝐷𝐵

=
∑ 𝑊[𝑁𝑆](𝑑)2𝐷𝐵

[𝑁𝑆]

𝑑=1/𝐷𝐵

2 ∑ 𝑊[𝑁𝑆](𝑑)
𝐷𝐵

[𝑁𝑆]

𝑑=1/𝐷𝐵

     A29 

𝑉[𝑁𝑆]
𝑊 = 2𝜋 ∑ 𝑑 ∙ 𝑊[𝑁𝑆]𝐷𝐵

[𝑁𝑆]

𝑑=
1

𝐷𝐵

(𝑑) ∙ ∆𝑥 = 2𝜋 ∑ 𝑑 ∙ 𝑊[𝑁𝑆]𝐷𝐵
[𝑁𝑆]

𝑑=
1

𝐷𝐵

(𝑑) ∙
1

𝐸[𝐷𝐵]
   A30 

𝑀[𝑁𝑆]
[0,𝐷(𝑊𝑚𝑎𝑥

[𝑁𝑆]
)]

= ∑ 𝑊[𝑁𝑆](𝑑) ∙
∆𝑥

𝐷𝐵

𝐷(𝑊𝑚𝑎𝑥
[𝑁𝑆]

)

𝑑=1/𝐷𝐵
=

1

𝐷𝐵
∑ 𝑊[𝑁𝑆](𝑑)

𝐷(𝑊𝑚𝑎𝑥
[𝑁𝑆]

)

𝑑=1/𝐷𝐵
   A31 

𝑀[𝑁𝑆]
[𝐷(𝑊𝑚𝑎𝑥

[𝑁𝑆]
),𝐷𝐵

[𝑁𝑆]
]

= ∑ 𝑊[𝑁𝑆](𝑑) ∙
∆𝑥

𝐷𝐵

𝐷𝐵
[𝑁𝑆]

𝑑=𝐷(𝑊𝑚𝑎𝑥
[𝑁𝑆]

)
=

1

𝐷𝐵
∑ 𝑊[𝑁𝑆](𝑑)

𝐷𝐵
[𝑁𝑆]

𝑑=𝐷(𝑊𝑚𝑎𝑥
[𝑁𝑆]

)
  A32 

𝑀𝑊𝐷
[𝑁𝑆]

= 𝑊𝑚𝑎𝑥
[𝑁𝑆] ∙ 𝐷(𝑊𝑚𝑎𝑥

[𝑁𝑆])          A33 

𝑀𝑊𝐷̅̅ ̅̅ ̅
[𝑁𝑆]

= 𝑊[𝑁𝑆]̅̅ ̅̅ ̅̅ ̅̅ ∙ 𝑑[𝑁𝑆]̅̅ ̅̅ ̅̅           A34 

.  
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